Browse Technologies

Displaying 71 - 80 of 178


Lickometer: Instrument for measuring rodent drinking behavior

Researchers at Vanderbilt University designed an instrument capable of higher accuracy and analyzing lick microstructure compared to current available models. This device is compatible with classic ventilated home cages, making it easy to build and use with an intuitive touchscreen graphical user interface. The system tracks two-bottle choice licking behavior in up to 18 rodent cages, or 36 single bottles, on a minute-to-minute timescale controlled by a single Arduino microcontroller. Ultimately, the system measures drinking preference over time and changes in bout microstructure, with undisturbed recordings lasting up to 7 days.


Licensing Contact

Greg Pawel

615.343.0996

Targeted photodynamic therapy for S. aureus infections

Vanderbilt researchers have developed a combination photodynamic therapy (PDT) for targeting MRSA infections in skin that is not only effective but also HIGHLY SPECIFIC and LESS SUSCEPTIBLE TO RESISTANCE, adding a much needed therapy to our quickly depleting arsenal against this pathogen.


Licensing Contact

Cameron Sargent

615.322.5907

Oral administration of levocarnitine for treating Sjögren's Syndrome-associated dry eye

Sjögren's syndrome (SjS) is a common and debilitating autoimmune disease, causing dry eye symptoms ranging from discomfort to dysfunction. Vanderbilt researchers have identified orally administered levocarnitine as a novel potential therapeutic for treating this condition.


Licensing Contact

Mike Villalobos

615.322.6751
Opthamology

Anti-inflammatory microparticles for sustained ocular drug delivery

Vanderbilt researchers have developed an injectable drug delivery vehicle using microparticles (MPs) that not only provide sustained cargo delivery over extended time but also play a therapeutic role themselves in reducing inflammation. This drug delivery platform can be used in treating ocular diseases such as glaucoma and traumatic optic neuropathy, as well as other inflammatory diseases throughout the body like peripheral arterial disease and osteoarthritis.


Licensing Contact

Taylor Jordan

615.936.7505

Small Molecule-GIRK Potassium Channel Modulators That Are Anxiolytic Therapeutics

The G-protein activated, inward-rectifying potassium (K+) channels, "GIRKs", are a family of ion channels that has been the focus of intense research interest for nearly two decades. GIRK has been shown to play important roles in the pathophysiology of diseases such as anxiety, epilepsy, Down's syndrome, pain perception and drug addiction. Here scientists at Vanderbilt developed the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810) and demonstrated that ML297 is active in animal models of epilepsy. While the group is using ML297 to continue to explore the therapeutic benefits of GIRK modulation, they are continuing to develop more selective and druggable GIRK inhibitors from different scaffolds.


Licensing Contact

Cameron Sargent

615.322.5907
Therapeutics
Analgesic
Small Molecule

Diagnostics Management Team

The sheer volume of medical information available to physicians today is overwhelming. Diagnostic Management Team provides a concise, accurate method for ordering the correct diagnostic tests every time, and it returns the results in a uniform report format, easily read by the physician. This has already been launched within Vanderbilt University, with a high adoption rate amongst physicians and has already shown significant savings.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Mary Zutter
Oncology

Use of Fluid Shear Stress Treatment to Enhance T Cell Activation

Researchers at Vanderbilt University have developed a technique to enhance immune cell activation by exposing cells to mechanical force while culturing. Proof-of-concept data indicate that activating immune cells with this method may improve therapeutic efficacy and reduce manufacturing expenses, making powerful CAR T cell therapies more accessible to patients in need.


Licensing Contact

Cameron Sargent

615.322.5907

New Optical Tweezers for Rapid Control of Nanoscale Objects

Vanderbilt researchers have developed a novel technology for trapping and dynamically manipulating nanoscale objects. Control over miniature objects like proteins can aid in applications such as biological sensing, single molecule analysis, and size-based sorting of nanoscale objects.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Justus Ndukaife

PIQASO: A rigid phantom for comprehensive end-to-end evaluation of online adaptive radiotherapy systems

There is currently no radiotherapy phantom capable of quantitatively assessing all components of an online adaptive radiotherapy (online ART) system in a comprehensive end-to-end test.Represented here is a novel, rigid phantom that can simultaneously evaluate an online ART system's image acquisition, deformable image registration, contour propagation, plan re-optimization, dose calculation, and beam delivery in a single process that is robust, quantitative, and convenient.


Licensing Contact

Masood Machingal

615.343.3548

Improved Biomanufacturing Using Biological Clock Control for High Yield/Low Cost Bioproduct

A team of researchers at Vanderbilt University has developed a method of manipulating the circadian clock of cyanobacteria. This biological manipulation is used to increase gene expression in target genes that produce biofuel and high-value bioproducts, such as pharmaceuticals and cosmetics from precursor-expressing genes. Altering the circadian rhythm in the bacteria provides an improved approach to bioproduct development on a large scale using sunlight as a zero--cost energy solution.


Licensing Contact

Masood Machingal

615.343.3548