Medical Devices

Displaying 1 - 10 of 66


IntelliCane: Instrumented cane for diagnosis and evaluation of gait behavior in individuals with mobility issues.

This device is designed to assist physical therapists in collection of objective data during gait analysis, to facilitate appropriate assistive gait device prescription, to provide patients and therapists feedback during gait training, and to reduce wrist and shoulder injuries with cane usage.Currently gait characteristics are "measured" in a clinic-based atmosphere. This has two limitations: (i) subjective allocation of "measures" of gait characteristics and (ii) limited data based on trials in the clinic ONLY. What this technology is designed to do is achieve freedom from both of these limitations. The measurements are objective and numerical values (force etc.) and the clinic could provide the cane to the user for obtaining a much more extensive data set including use during normal life activities at home etc.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Aliquot Delivery System

Vanderbilt researchers have developed a novel device for accurately delivering a small aliquot of liquid pharmaceutical agent to a treatment site. This system enables more precise dosage and eliminates expensive waste found in conventional methods.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Easy to Use Patient Immobilizer for Stabilizing Limbs During MRI Imaging

Vanderbilt students have created a stabilization system for secure and stable MRI positioning of hands, wrists, knees, shoulders, and the lower back, using affordable, easy to use, and readily available materials. The system effectively reduces image blurring using a non-irritating film and a supportive frame. This device can simultaneously improve MRI diagnosis, enhance the patient experience, and minimize the time and financial burdens of image retakes.


Licensing Contact

Masood Machingal

615.343.3548

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Ashok Choudhury

615.322.2503

Automated Inflatable Binder to Counter the Effects of Orthostatic Hypotension

Vanderbilt scientists have developed an automated inflatable abdominal binder that can detect when a patient moves from a prone or sitting positon to a standing position and automatically apply a sustained servo-controlled compression pressure in order to counter the effects of OH. The binder is as effective as conventional drug therapy in controlling OH, without subjecting patients to potentially harmful side effects and interactions with other medications.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices
Cardiovascular

MAESTRO: Non-Robotic Dexterous Laproscopic Instrument with a Wrist providing seven degrees of freedom

Inventors at Vanderbilt University have developed a non-robotic dexterous laparoscopic manipulator with a wrist providing seven-degrees-of-freedom. The device has a novel user interface that intuitively maps motion of the surgeon's hands to the tool's "hands".


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Michael Miga

Image Guidance System for Breast Cancer Surgery

Vanderbilt researchers have developed an image guidance system that aims to reduce the revision rate for breast conserving surgeries through the use of intraoperative tumor location. The platform integrates MRI imaging, optical tracking, tracked ultrasound, and patient specific biomechanical models to provide a superior tumor localization end result.


Licensing Contact

Philip Swaney

615.322.1067

Transoral Lung Access Device

Transoral lung access is preferable to traditional needlebasedaccess due to the lower risk of lung collapse. However present bronchoscope-based devices enable access to only a small portion of the lung. The present device is a robotic image-guided bronchoscope to navigate the airway under closed-loop control to the target. IT is designed to provide transoral access to any location in the lung, particularly the hard-to-reach peripheral regions.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices