Medical Devices

Displaying 1 - 10 of 69


An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Palatoglossus Muscle Stimulation for Treatment of Obstructive Sleep Apnea

A Vanderbilt researcher has developed a device to stimulate the palatoglossus muscle in order to treat sleep apnea. This has the potential to treat patients who have failed to succeed with current sleep apnea treatments.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Closed-loop System for Adjustment of Cranial Nerve Stimulator for Obstructive Sleep Apnea

A Vanderbilt researcher has developed a closed-loop system that combines live recorded data from a polysomnography (PSG) system amplifier with output from a system providing real-time feedback on the structure of the pharyngeal airway. This would allow the system to automatically adjust a hypoglossal nerve stimulator to treat obstructive sleep apnea.


Licensing Contact

Chris Harris

615.343.4433

Inventors

David Kent
Medical Devices

Wearable Metabolic Rate Sensor

Vanderbilt researchers have developed a portable, non-invasive sensor system that can take measurements through the skin to provide insights into metabolic rate and energy expenditure outside of a clinical setting. Existing methods for estimating metabolic rate rely on comparisons between user-reported body parameters and population averages, which can result in inaccurate estimates. Additionally, existing portable devices that provide estimates of metabolic rate are limited by factors such as cost per use and frequency of measurement. The present technology overcomes these limitations and can be directly integrated with commercial wearable devices for an accurate assessment of metabolic rate.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

Method for Non-Invasive Complete Vascular Occlusion Using MR Guided Focused Ultrasound Surgery

Researchers have developed a non-invasive method for creating vascular occlusions at specific locations within a vessel using magnetic resonance guided focused ultrasound (MRgFUS). The speed and efficacy of this approach is better than traditional vascular occlusion methods, and the method can be further enhanced through the use of phase shift nano-droplets. The approach is even applicable to large vessels that can be extremely challenging to ablate due to the heat sink effect. Ultimately, the ability to occlude selected vasculature could aid in the treatment of vascular malformations, hemorrhage control, and tumor devascularization.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Point of Care Rheological Assay for Sickle Cell Disease

Vanderbilt researchers have created a novel technology for the diagnosis and monitoring of disease states using the rheological properties of a blood sample with a lateral flow membrane.


Licensing Contact

Ashok Choudhury

615.322.2503

Portfolio of Image-Guidance and Organ Localization Technologies from the Lab of Professor Michael Miga

The focus of Dr. Miga's laboratory is on the development of new paradigms in detection, diagnosis, characterization, and treatment of disease through the integration of computational models into research and clinical practice.


Licensing Contact

Philip Swaney

615.322.1067

Image-Guided Radio Frequency Ablation

The Biomedical Modeling Laboratory at Vanderbilt University has produced a method and apparatus for use during the collection and processing of physical space data during image-guided surgery. This technology provides a complete system for performing tissue ablations that includes a spatial probe, an ablation tool, and a computer processor. Using this technology, the surgeon is able to view the location of the ablation tool in the patient's medical images as well as the ablation zone of the instrument and the particular portion of the tissue to be ablated.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

Flexure Wrist for Surgical Devices

Vanderbilt researchers have designed a flexible wrist for use with manual or robotic surgical systems.


Licensing Contact

Ashok Choudhury

615.322.2503

Coordinated Control for Arm Prosthesis

Researchers at Vanderbilt have created a novel control of an (myoelectric) arm prosthesis consisting of at least an elbow joint with the possibility of an additional single or multi-axis wrist joint.


Licensing Contact

Ashok Choudhury

615.322.2503