Therapeutics

Displaying 1 - 10 of 31


Thiazole Based Inhibitors of Lactate Dehydrogenase (LDH) as Therapeutics

Compounds that inhibit LDH activity have potential for the development of anti-cancer therapeutics. Previously developed LDH inhibitors have significant drawbacks, including poor potency and/or poor bioavailability, limiting their utility as therapeutics. The present technology provides novel 1 H-PYRAZOL-1 -YL-THIAZOLE based LDH inhibitors with improved potency, selectivity, and/or bioavailability for the treatment of cancer.


Licensing Contact

Jody Hankins

615.322.5907
Therapeutics

Long-Lasting and Self-Sustaining Cell Therapy System

Researchers at Vanderbilt have created a novel drug delivery system using two distinct T-cell populations that interact to promote engraftment and persistence in pre-clinical models, increasing the efficacy of T-cell therapies. Furthermore, "booster" treatments can be administered months after the first dose to produce an expansion of antigen specific T cells. These advantages result in longer-term therapeutic efficacy and could reduce the number of treatments required. This system also represents a viable self-renewing platform for the delivery of biologic drugs in patients who would otherwise require frequent administration.


Licensing Contact

Clarissa Muere

615.343.2430

New Clostridium Difficile Recombinant Toxin for Safe Vaccine Development

A structural biology approach has identified a conserved region common to multiple Clostridium toxins. Specific mutations of the protein sequence in this region prevent the toxins from entering into intestinal cells, thereby preventing widespread tissue damage. These recombinant Clostridium toxins may be used to create a multivalent vaccine to protect against multiple species of Clostridium. Furthermore, the recombinant toxin may be used as a safer alternative to the native toxins in vaccine manufacturing. This discovery stems from a collaboration between the laboratories of Dr. Borden Lacy of Vanderbilt University and Dr. Roman Melnyk of the Hospital for Sick Children.


Licensing Contact

Jody Hankins

615.322.5907

Small Molecule Theraputics That Target the Muscarinic Acetylcholine Receptor 1 For The Treatment of Alzheimer's Disease

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Neuroscience/Neurology

Cell-Permeable Socs Proteins That Inhibit Cytokine-Induced Signaling

Scientists at Vanderbilt have developed a unique polypeptide using cell-penetrating SOCS polypeptides or SOCS sequences designed to inhibits cytokine signaling and thus prevent or treat inflammation or an inflammatory related disease such as diabetes. This strategy has been validated in NOD mice models for either induced or naturally occurring diabetes and have been efficacious.


Licensing Contact

Janis Elsner

615.343.2430
Therapeutics

Natural product for seizure relief and long term disease modification in Dravet Syndrome

Dravet syndrome is a lifelong form of epilepsy beginning in early childhood. Children with Dravet syndrome suffer aggressive seizures, impaired cognition, and an increased risk of premature death. Dravet syndrome does not respond to conventional anti-epileptic drugs, and current treatment regimens fail to fully elevate seizures. No disease modifying treatments exist. Researchers at Vanderbilt University have discovered a novel application of a known natural product in treating Dravet syndrome. This natural product could be beneficial to children suffering from Dravet syndrome in both reducing seizures and treating the underlying disease cause.


Licensing Contact

Tom Utley

615.343.3852

Inventors

Jingqiong Kang
Therapeutics
Neuroscience/Neurology

Systems-Biology Infrastructure to Identify Drug Repurposing Opportunities as Antiviral & Anticancer Therapeutics

Vanderbilt researchers have developed an in-silico screening method to reveal new indications for existing drugs with known protein targets using a novel infrastructure. The infrastructure integrates multiple factors across system-biology models to create a drug discovery pipeline.


Licensing Contact

Janis Elsner

615.343.2430

Targeting microRNAs as a Treatment for Vascular Disease

Vanderbilt researchers have identified a highly expressed microRNA crucial in angiotensin induced hypertension; and developed a therapeutic strategy that focuses on local or systemic administration of antisense microRNA to inhibit microRNA expression as treatment for vascular diseases. Promising data in animal models reveals that the inhibition of such microRNA not only prevents fibrosis but also reverses previously established aortic stiffening.


Licensing Contact

Jody Hankins

615.322.5907

New antibiotics against new targets in multi-drug resistant microorganisms

New everninomicin antibiotics including a potent bifunctional antibiotic natural product targeting two different and distant ribosomal sites are under development and can be readily produced using synthetic biology. Developing resistance to this bidentate antibiotic should be very difficult for pathogenic microorganisms.


Licensing Contact

Jody Hankins

615.322.5907
Therapeutics
Infectious Disease

Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.


Licensing Contact

Ashok Choudhury

615.322.2503