Browse Technologies

Displaying 31 - 40 of 178


Compliant Insertion, Motion, and Force Control of Continuum Robots

Vanderbilt researchers have developed a framework for compliant insertion with hybrid motion and force control of continuum robots. This technology expands the capabilities of robotic surgery by providing continuum robots with the ability to autonomously discern, locate, and react to contact along their length and calculate forces at the tip, thus enabling quick and safe deployment of snake-like robots into deep anatomical passages or unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

Dexterous Robotic Wrist and Gripper for Extreme Precision Micro-surgical Maneuvers in Confined Spaces

This invention presents a robotic wrist and gripper that operate with three independent degrees of freedom (yaw, pitch and roll) for increased dexterity in minimally invasive surgical procedures. This is the smallest robotic wrist of its kind, and due to its size and unparalleled dexterity, this wrist enables complex surgical maneuvers for minimally invasive procedures in highly confined spaces. Examples of surgical areas benefiting from use of this wrist include natural orifice surgery, single port access surgery, and minimally invasive surgery. In particular, the proposed wrist allows for very high precision roll about the longitudinal axis of the gripper while overcoming problems of run-out motion typically encountered in existing wrists. Thus this wrist is particularly suitable for extreme precision maneuvers for micro-surgery in confined spaces.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Michael Miga

PosiSeat(TM): Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.


Licensing Contact

Taylor Jordan

615.936.7505

Image Guidance System for Breast Cancer Surgery

Vanderbilt researchers have developed an image guidance system that aims to reduce the revision rate for breast conserving surgeries through the use of intraoperative tumor location. The platform integrates MRI imaging, optical tracking, tracked ultrasound, and patient specific biomechanical models to provide a superior tumor localization end result.


Licensing Contact

Philip Swaney

615.322.1067

A Simple and Highly Portable Flow Phantom for Doppler Ultrasound Quality Measurements

A new phantom has been designed in which Doppler ultrasound measurements can be conducted for quality assurance purposes. The phantom is highly portable, does not require power to operate, and allows for simple and reproducible measurements of Doppler ultrasound function. This combination of advantages allows for realistic monthly, weekly, even daily Doppler QA measurements.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Bright White Light Nanocrystals for LEDs

A research team lead by Professor Sandra Rosenthal at Vanderbilt University has developed nanocrystals (~2 nm diameter) that emit white light with very high quantum efficiency. This technology would be a viable cost effective candidate for commercial solid-state lighting applications, such as Light Emitting Diodes (LEDs). These nanocrystals were originally discovered by the same group in 2005; a recent breakthrough in post-treatment results in improving fluorescent quantum yield up to ~ 45%.


Licensing Contact

Chris Harris

615.343.4433

COX2 Probes for Multimodal Imaging

Inventors at Vanderbilt University have developed a novel chemical design and synthesis process for azulene-based COX2 contrast agents which can be used for molecular imaging, via a variety of imaging techniques. These COX2 probes can be utilized for numerous applications, including imaging cancers and inflammation caused by arthritis and cardiovascular diseases. The process for developing these COX2 contrast agents has been significantly improved through a convergent synthesis process which reduces the required steps to establish the COX2 precursors.


Licensing Contact

Masood Machingal

615.343.3548
Medical Imaging

Cuffed Inner Cannula and Flexible Outer Cannula Tracheostomy Tube

This new tracheostomy tube design prevents the need for decannulation when changing from a cuffed to cuffless (or vice versa) tracheostomy. It also enables a comfortable and fit in patients with both large and small neck diameters. The tube enhances patient safety by maintaining the airway at all times when downsizing or upsizing.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

Gratings on Porous Silicon Structures for Sensing Applications

In this technology diffraction-based sensors made from porous materials are used for the detection of small molecules. The porous nature of the diffraction gratings that gives rise to an extremely large active sensing area enables a very high level of sensitivity. Specificity is achieved by functionalizing the porous gratings with selective binding species.


Licensing Contact

Yiorgos Kostoulas

615.322.9790