Diagnostics

Displaying 1 - 10 of 29


Adaptive PCR: A PCR control system to overcome challenging conditions

A PCR control system to overcome challenging conditions. By directly monitoring the hybridization of fluorescently labelled L-DNA mimics of the template DNA strands and primers, it is possible to improve the efficiency of PCR in challenging conditions. This approach eliminates some of the sample preparation and trial and error that would otherwise be required for difficult sample types such as urine or other samples that contain high levels of salts.  In addition, this approach enables on-demand PCR in most any environment.


Licensing Contact

Jody Hankins

615.322.5907
Research Reagent

Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Ashok Choudhury

615.322.2503

Low-Cost Non-Invasive Handheld Ultrasound Device for Measuring Tissue Stiffness

Vanderbilt University researchers have developed a hand-held device to quantitatively measure tissue stiffness for medical monitoring. This device is non-invasive, low-cost, and can be used at the point of care.


Licensing Contact

Masood Machingal

615.343.3548

Metabolic Biomarkers for Detecting Early Stage Chronic Kidney Disease

Vanderbilt researchers have identified five key metabolites that, in combination with routine clinical tests, can serve as viable biomarkers for early-stage CKD. This technology offers a robust, minimally invasive, and accurate diagnostic tool that can be deployed in a variety of healthcare settings to improve care and slow or prevent progression to end-stage renal disease.


Licensing Contact

Tom Utley

615.343.3852

Inventors

Yan Guo, Ying-Yong Zhao
Diagnostics

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Ashok Choudhury

615.322.2503

Prognostic Assay for High-altitude Pulmonary Hypertension in Cattle (Brisket Disease)

This genetic test identifies cattle at high risk of developing pulmonary hypertension at high altitudes (often called "brisket disease").  Brisket disease afflicts about 5% of cattle at high altitudes and the current predictive test for at-risk cattle is a measure of pulmonary arterial pressure (PAP).  This current PAP test has some major drawbacks.  First, it is an invasive test.  Secondly, it is not accurate at lower elevations -- so at-risk cattle cannot identified before incurring the cost of transport to high altitude.  There is no treatment for the disease except prompt removal of the animal to lower elevations.  This technology measures genetic variants that confer susceptibility to brisket disease, and could be developed into a diagnostic or a prognostic test for use prior to shipping cattle to higher elevations or in breeding operations.


Licensing Contact

Jody Hankins

615.322.5907

Point of Care Rheological Assay for Sickle Cell Disease

Vanderbilt researchers have created a novel technology for the diagnosis and monitoring of disease states using the rheological properties of a blood sample with a lateral flow membrane.


Licensing Contact

Ashok Choudhury

615.322.2503

Advanced Ultrasound Imaging for Kidney Stone Detection

The standard for kidney stone detection is through the use of computed tomography (CT). However, CT is expensive and delivers harmful ionizing radiation into the body. Ultrasound would be the ideal way to detect kidney stones except that it performs poorly in detecting and accurately sizing stones. Vanderbilt researchers inventors have developed a technique that is able to separate hard, mineralized material (i.e kidney stones) from soft tissue in a way that is both cheaper and safer than CT and performs better than conventional ultrasound imaging.


Licensing Contact

Masood Machingal

615.343.3548

Low-cost, Normally Closed Microfluidic Valve

Vanderbilt researchers have developed a normally closed valve that is able to provide selective movement of small fluid quantities in a microfluidic device. The present microfluidic valve can be actuated using a simple rotating drivehead and mechanical support, greatly simplifying the valve design.


Licensing Contact

Ashok Choudhury

615.322.2503

Molecular Image Fusion: Cross-Modality Modeling and Prediction Software for Molecular Imaging

A research team at Vanderbilt University Mass Spectrometry Research Center has developed the Molecular Image Fusion software system, that by fusing spatial correspondence between histology and imaging mass spectrometry (IMS) measurements and cross-modality modeling, can predict ion distributions in tissue at spatial resolutions that exceed their acquisition resolution. The prediction resolution can even exceed the highest spatial resolution at which IMS can be physically measured. This software has been successfully tested on different IMS datasets and can be extended to other imaging modalities like MRI, PET, CT, profilometry, ion mobility spectroscopy, and different forms of microscopy.


Licensing Contact

Karen Rufus

615.322.4295