Medical Imaging

Displaying 1 - 10 of 49


Enhanced Optical Imaging for the Treatment of Retinal Disease

Vanderbilt researchers have developed a system for enhancing the imaging capabilities of optical coherence tomography (OCT), a tool commonly used to monitor and treat patients with retinal disease. The image resolution of OCT, however, is intrinsically limited. Ideally, a contrast agent could be used to highlight specific parts of the retina within the image, but dye alone is largely ineffective because of the way OCT generates the image. Photothermal heating solves this problem by creating local zones of tissue expansion which can be distinctly detected by OCT. Photothermal-OCT is safe, effective, and enhances the imaging power of a tool widely used by opticians.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

PIQASO: A rigid phantom for comprehensive end-to-end evaluation of online adaptive radiotherapy systems

There is currently no radiotherapy phantom capable of quantitatively assessing all components of an online adaptive radiotherapy (online ART) system in a comprehensive end-to-end test.Represented here is a novel, rigid phantom that can simultaneously evaluate an online ART system's image acquisition, deformable image registration, contour propagation, plan re-optimization, dose calculation, and beam delivery in a single process that is robust, quantitative, and convenient.


Licensing Contact

Masood Machingal

615.343.3548

Bioresorbable RF Coils for Post-Surgical Monitoring by MRI

Vanderbilt researchers have developed bioresorbable RF coils to improve the signal-to-noise ratio (SNR) for use in post-surgical monitoring.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Mark Does, John Rogers

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Michael Miga

Systems and Methods for Non-destructive Evaluation of Optical Material Properties and Surfaces

A team of Vanderbilt researchers has developed a novel system and method for non-destructive characterization of compound lenses. The approach uses optical coherence tomography and reflectance confocal microscopy to fully characterize lens geometry and glass materials, enabling accurate modeling of compound lenses.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Non-invasive Fiducial Marker for Imaging and Radiation Delivery in the Eye

A team of Vanderbilt researchers has developed a novel fiducial marker for use during radiosurgery of the eye. The fiducial is a non-invasive, comfortable method for performing registration of preoperative medical images and the radiotherapy target during therapy. The device aims to remove the need for existing invasive registration procedures, while still providing accurate localization to the clinician.


Licensing Contact

Philip Swaney

615.322.1067

Image-Guided Navigation System for Endoscopic Eye Surgery

A flexible endoscope for ophthalmic orbital surgery is presented. The endoscope has illuminating fiber, image fiber and a free conduit to deliver purge gas/fluid in addition to instruments such as ablation instruments, coagulating instrument or a medication delivery instrument.


Licensing Contact

Philip Swaney

615.322.1067

PosiSeat(TM): Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.


Licensing Contact

Taylor Jordan

615.936.7505

Portfolio of Image-Guidance and Organ Localization Technologies from the Lab of Professor Michael Miga

The focus of Dr. Miga's laboratory is on the development of new paradigms in detection, diagnosis, characterization, and treatment of disease through the integration of computational models into research and clinical practice.


Licensing Contact

Philip Swaney

615.322.1067

Image Guidance System for Breast Cancer Surgery

Vanderbilt researchers have developed an image guidance system that aims to reduce the revision rate for breast conserving surgeries through the use of intraoperative tumor location. The platform integrates MRI imaging, optical tracking, tracked ultrasound, and patient specific biomechanical models to provide a superior tumor localization end result.


Licensing Contact

Philip Swaney

615.322.1067