Medical Imaging

Displaying 1 - 10 of 47


Portfolio of Image-Guidance and Organ Localization Technologies from the Lab of Professor Michael Miga

The focus of Dr. Miga's laboratory is on the development of new paradigms in detection, diagnosis, characterization, and treatment of disease through the integration of computational models into research and clinical practice.


Licensing Contact

Philip Swaney

615.322.1067

Advanced Ultrasound Imaging for Kidney Stone Detection

The standard for kidney stone detection is through the use of computed tomography (CT). However, CT is expensive and delivers harmful ionizing radiation into the body. Ultrasound would be the ideal way to detect kidney stones except that it performs poorly in detecting and accurately sizing stones. Vanderbilt researchers inventors have developed a technique that is able to separate hard, mineralized material (i.e kidney stones) from soft tissue in a way that is both cheaper and safer than CT and performs better than conventional ultrasound imaging.


Licensing Contact

Masood Machingal

615.343.3548

Advanced Method for Data Corrections in Organ Deformation

A group of Vanderbilt University researchers have developed a solution that will correct for the mis-registration of image data in image-guided surgery. The solution uses software to correct for any mis-registration that is caused by the presence of intraoperative deformations. This invention helps to improve the performance and capabilities of image-guided surgery.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Brain Shift Compensation Using Computer Models

The Vanderbilt University Biomedical Modeling Laboratory, led by Dr. Michael Miga, has developed a method to overcome intra-operative brain shifts experienced during neurosurgery using computer modeling that augments standard image-guided surgery technology. Current standard of care methods of image-guided surgery have limitations on accuracy, which is overcome by this new method.


Licensing Contact

Philip Swaney

615.322.1067

Laser Range Scanning for Cortical Surface Registration & Deformation Tracking

This technology aligns a patient in an image-guided surgery system (registration) without the use of fiducial markers on the cranium exterior. The system utilizes laser range scanning technology, the features on the cortical surface and the corresponding natural features derived from the patient's preoperative MR-data. In addition, the technology is amenable to measuring deformation (brain shift) in order to compensate for intra-operative registration error.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Philip Swaney

615.322.1067

Molecular Image Fusion: Cross-Modality Modeling and Prediction Software for Molecular Imaging

A research team at Vanderbilt University Mass Spectrometry Research Center has developed the Molecular Image Fusion software system, that by fusing spatial correspondence between histology and imaging mass spectrometry (IMS) measurements and cross-modality modeling, can predict ion distributions in tissue at spatial resolutions that exceed their acquisition resolution. The prediction resolution can even exceed the highest spatial resolution at which IMS can be physically measured. This software has been successfully tested on different IMS datasets and can be extended to other imaging modalities like MRI, PET, CT, profilometry, ion mobility spectroscopy, and different forms of microscopy.


Licensing Contact

Karen Rufus

615.322.4295

Selective Size Imaging using Filters via Diffusion Times (SSIFT)

Vanderbilt researchers have developed a novel MRI-based method for fast, robust, and accurate imaging of biological tissue by selecting a specific cell size range (such as tumors) without the need for a contrast agent. One exciting application of this method is imaging brain metastases (BM) that are difficult to differentiate from other brain abnormalities such as radionecrosis when using existing approaches.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Easy to Use Patient Immobilizer for Stabilizing Limbs During MRI Imaging

Vanderbilt students have created a stabilization system for secure and stable MRI positioning of hands, wrists, knees, shoulders, and the lower back, using affordable, easy to use, and readily available materials. The system effectively reduces image blurring using a non-irritating film and a supportive frame. This device can simultaneously improve MRI diagnosis, enhance the patient experience, and minimize the time and financial burdens of image retakes.


Licensing Contact

Masood Machingal

615.343.3548

Model-based Compression Correction Framework for Ultrasound

Vanderbilt researchers have developed a system that corrects for compressional effects in ultrasound data during soft tissue imaging. The system uses tracking and digitization information to detect the pose of the ultrasound probe during imaging, and then couples this information with a biomechanical model of the tissue to correct compressional effects during intraoperative imaging.


Licensing Contact

Philip Swaney

615.322.1067