Browse Technologies

Displaying 1 - 10 of 260


Adaptive PCR: A PCR control system to overcome challenging conditions

A PCR control system to overcome challenging conditions. By directly monitoring the hybridization of fluorescently labelled L-DNA mimics of the template DNA strands and primers, it is possible to improve the efficiency of PCR in challenging conditions. This approach eliminates some of the sample preparation and trial and error that would otherwise be required for difficult sample types such as urine or other samples that contain high levels of salts.  In addition, this approach enables on-demand PCR in most any environment.


Licensing Contact

Jody Hankins

615.322.5907
Research Reagent

Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.


Licensing Contact

Ashok Choudhury

615.322.2503

Non-Invasive Skin Cancer Detection using Raman Spectroscopy-OCT System (Portfolio)

Vanderbilt University researchers have designed a system for non-invasive discrimination between normal and cancerous skin lesions. The system combines the depth-resolving capabilities of OCT technique with Raman Spectroscopy's specificity of molecular chemistry. By linking both imagining techniques into a single detector arm, the complexity, cost, and size of previously reported RS-OCT instruments have been significantly improved. The combined instrument is capable of acquiring data sets that allow for more thorough assessment of a sample than existing optical techniques.


Licensing Contact

Ashok Choudhury

615.322.2503

Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.


Licensing Contact

Ashok Choudhury

615.322.2503

MAESTRO: Non-Robotic Dexterous Laproscopic Instrument with a Wrist providing seven degrees of freedom

Inventors at Vanderbilt University have developed a non-robotic dexterous laparoscopic manipulator with a wrist providing seven-degrees-of-freedom. The device has a novel user interface that intuitively maps motion of the surgeon's hands to the tool's "hands".


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Breast Tumor Margin Detection System Using Spatially Offset Raman Spectroscopy

Vanderbilt University researchers have developed a technology that uses spatially offset Raman spectroscopy to obtain depth-resolved information from the margins of tumors. This helps to determine positive or negative tumor margins in applications such as breast lumpectomy, and the technology is currently being investigated for breast cancer margin detection.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexure Wrist for Surgical Devices

Vanderbilt researchers have designed a flexible wrist for use with manual or robotic surgical systems.


Licensing Contact

Ashok Choudhury

615.322.2503

Traveler's Diarrhea Vaccine for Enterotoxigenic E. coli (ETEC)

Vanderbilt researchers are developing a novel vaccine for preventing enterotoxigenic Escherichia coli (ETEC) infection of the gut which causes traveler's diarrhea and childhood death in developing countries. The vaccine uses colonization surface antigens and their constituent proteins to generate an immune response. This prevents infection by blocking the ability of bacteria to adhere to the intestinal mucosa. Mice treated with this vaccine showed significantly reduced disease and bacterial colonization compared to control. Preclinical development of this vaccine is ongoing and includes testing of different adjuvants and routes of administration. ETEC is a leading cause of gastrointestinal disease in developing countries affecting both residents and visitors. Residents in particular are primarily children who suffer high morbidity and mortality from the dehydrating effects of the illness. Visitors include the approximately 800 -- 1000 million people who travel to developing countries each year with 20 -- 60 % of them developing this illness. A commercially available vaccine to inoculate residents and travelers against ETEC would represent a significant opportunity to satisfy an unmet need and improve human health.


Licensing Contact

Jody Hankins

615.322.5907

Flat-Cut Bit for Cranial Perforator

Inventors at Vanderbilt have developed a novel perforating drill bit for cranial surgery. Deep brain stimlation (DBS) has become a technique for the treatment of movement disorders, as well as obsessive compulsive disorders and epilespy. This cranial drill bit significantly improves the process of preparing the periphery around the cranial punch during electrode implantation, one of the critical steps during DBS surgery.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal

615.343.3548