Thin Films & Nanomaterials

Displaying 1 - 10 of 20


Actively Reconfigurable Metasurfaces for Dynamic Optical Components

Phase change materials (PCMs) are a fascinating class of materials that can change certain material properties (e.g., absorbance or reflectivity) upon the application of a stimulus. Researchers at Vanderbilt University have used a PCM to create a novel metamaterial that can be reconfigured for use in a wide range of potential optical and integrated photonic applications from the infrared to terahertz spectral domain.


Licensing Contact

Philip Swaney

615.322.1067

High Performance Nanofiltration Membranes

A research team led by Professor Shihong Lin at Vanderbilt University has developed a novel method to enhance the performance of nanofiltration (NF) membrane. This new approach has three major benefits:1) uses a class of additives that is low-cost and widely available2) is readily compatible with existing manufacturing infrastructure3) achieves ultra-sharp selectivity or enhanced perm-selectivity


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Shihong Lin

System for Transporting, Sorting, and Assembling Nanoscale Objects

Vanderbilt researchers have developed a new system for transporting and sorting nanoscale and mesoscale particles and biomolecules. The system is able to achieve size-based sorting and captures/arranges the particles within a few seconds, which is significantly faster than the existing method of diffusion-based transport.


Licensing Contact

Philip Swaney

615.322.1067

3D Junction Bipolar Membranes: More Efficient and Reliable Electrodialysis

Vanderbilt researchers have developed a unique membrane material for more efficient and reliable eletrodialysis. By utilizing a 3D junction structure, the nanofiber bipolar membrane does not degrade or delaminate during high current passage unlike commercial 2D membranes that are currently available.


Licensing Contact

Ashok Choudhury

615.322.2503

Lanthanide Oxide Nanoparticle Film Deposition Process

Vanderbilt researchers have developed a method for forming a film of lanthanide oxide nanoparticles using electrophoretic deposition. This technique is straightforward to set up and provides thickness control at high deposition rates, enabling site selective particle assembly for any size and shape.


Licensing Contact

Philip Swaney

615.322.1067

Porous Materials with Active Sites Created via In-Pore Synthesis

Vanderbilt researchers have synthesized porous adsorbent materials for the capture of toxic industrial chemicals. These adsorbent materials have finely dispersed reactive sites that allow for higher adsorption capacities than existing materials. They can be used in filters for the military, homeland security, first responders, and for a wide range of industrial and commercial catalysts to capture toxic gases such as ammonia and sulfur dioxide.


Licensing Contact

Philip Swaney

615.322.1067

Polar Liquid Crystals with High Dielectric Anisotropy

Vanderbilt inventors have developed a new class of liquid crystals with high dielectric anisotropy. A new class of liquid crystals containing boron in their structure has been developed with high dielectric anisotropy, which results in low threshold voltages.


Licensing Contact

Philip Swaney

615.322.1067

Electrochemically Actuated Optical Modulator

Vanderbilt University researchers have developed a novel approach for creating dynamic, tunable reflective color displays using an electrochemical modulator. The technology can be implemented into devices requiring low power reflective color displays, such as smart watches and e-readers, and is adaptable for spectral control across a broad spectrum of frequencies from the visible to the far infrared. This technology provides a low power, tunable approach for modulating the optical properties of a material.


Licensing Contact

Ashok Choudhury

615.322.2503

A Surfactant Based Low Molecular Weight Hydrogelator with Unprecedented Stability

Low molecular weight hydrogelator (LMHG) formulations are rare, but are preferred over polymeric hydrogels because of their improved biodegradability, biocompatibility and disintegration. Unfortunately, existing LMHGs often fall apart under slight environmental changes, seriously limiting their utility. However, the novel LMHG presented here is able to gelate >95% water in both acidic and basic forms, is robust to environmental changes, and has promising utility in controlled drug release, RNA delivery, tissue engineering, cosmetics, cancer therapy, biomaterials and other chemical industries, making it a promising new material for many different industries.


Licensing Contact

Philip Swaney

615.322.1067

Bright White Light Nanocrystals for LEDs

A research team lead by Professor Sandra Rosenthal at Vanderbilt University has developed nanocrystals (~2 nm diameter) that emit white light with very high quantum efficiency. This technology would be a viable cost effective candidate for commercial solid-state lighting applications, such as Light Emitting Diodes (LEDs). These nanocrystals were originally discovered by the same group in 2005; a recent breakthrough in post-treatment results in improving fluorescent quantum yield up to ~ 45%.


Licensing Contact

Chris Harris

615.343.4433