Browse Technologies

Displaying 51 - 60 of 67


Porous Materials with Active Sites Created via In-Pore Synthesis

Vanderbilt researchers have synthesized porous adsorbent materials for the capture of toxic industrial chemicals. These adsorbent materials have finely dispersed reactive sites that allow for higher adsorption capacities than existing materials. They can be used in filters for the military, homeland security, first responders, and for a wide range of industrial and commercial catalysts to capture toxic gases such as ammonia and sulfur dioxide.


Licensing Contact

Philip Swaney

615.322.1067

Real-time Detection of Position and Orientation of Wireless Endoscopy Capsule using Magnetic coupling

Vanderbilt researchers have developed a new system to detect the position, orientation, and pressure exerted on surrounding tissues of a wireless capsule endoscopy device.  Magnetic coupling is one of the few physical phenomena capable of transmitting actuation forces across a physical barrier.  Magnetic manipulation has the potential to make surgery less invasive, by allowing untethered miniature devices to enter the body through natural orifices or tiny incisions, and then maneuver with minimal disruption to healthy tissue.  In order to accomplish this goal, the pose (position and orientation) of the medical device must be available in real time.


Licensing Contact

Masood Machingal

615.343.3548

Synthesis and Characterization of New Terpolymers

Vanderbilt researchers have developed a novel method for synthesizing a new class of terpolymers with tunable mechanical and chemical properties for coronary stent applications.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Tentacle-Like Robots to Access Tight Spaces in Manufacturing and Medical Applications

Vanderbilt researchers have developed a novel method for enabling tentacle-like robots to reach into tight spaces in manufacturing or medical applications. This is useful for industrial inspection tasks, assembly of products like airplane wings with complex geometry, or making medical endoscopes reach places in the body they cannot reach today. The new invention involves routing actuation wires along a flexible arm through curved paths along the robot


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Wireless Tissue Palpation for Minimally Invasive Robotic Surgery Techniques

Researchers in Vanderbilt University's STORM Lab have developed a wireless palpation device that uses magnetic coupling between two units to provide valuable feedback about tissue properties and potential abnormalities. The wireless capabilities of this technology make it ideally suited for minimally invasive surgery and natural orifice procedures, as the device does not require the use of a surgical port.


Licensing Contact

Masood Machingal

615.343.3548
Gastrointestinal

Electrochemically Actuated Optical Modulator

Vanderbilt University researchers have developed a novel approach for creating dynamic, tunable reflective color displays using an electrochemical modulator. The technology can be implemented into devices requiring low power reflective color displays, such as smart watches and e-readers, and is adaptable for spectral control across a broad spectrum of frequencies from the visible to the far infrared. This technology provides a low power, tunable approach for modulating the optical properties of a material.


Licensing Contact

Philip Swaney

615.322.1067

Coordinated Control for Arm Prosthesis

Researchers at Vanderbilt have created a novel control of an (myoelectric) arm prosthesis consisting of at least an elbow joint with the possibility of an additional single or multi-axis wrist joint.


Licensing Contact

Ashok Choudhury

615.322.2503

Pulsed Infrared Light for the Inhibition of Central Nervous System Neurons

Vanderbilt researchers have developed a novel method for contactless simulation of the central nervous system. This technique involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system. While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Intuitive, Magnetic, Robotic Platform for Minimally-Invasive Surgery

Inventors at Vanderbilt University have developed a robotic platform capable of guaranteeing a degree of agility, mechanical stability, power, reliability, comparable to a standard robotic platform for laparoscopic surgery, but characterized by a much lower invasiveness.


Licensing Contact

Masood Machingal

615.343.3548
Gastrointestinal

Catheter Having Temperature Controlled Anchor and Related Methods

Heart valve disease is the 3rd most prevalent source of cardiovascular disease, leading to approximately 20,000 deaths per year in the U.S. alone. Moreover, there are an estimated 41,000 mitral valve procedures performed in the U.S. each year. The only effective, long-term treatment for mitral valve disease is open-chest valve replacement surgery, which is highly undesirable for elderly patients. Thus, there is a pressing need to develop novel percutaneous strategies for treatment that will reduce the number of open-chest surgeries. David Merryman and colleagues have developed a new, combined catheter that uses cryo temperatures to adhere to moving mitral valve leaflets and radiofrequency ablation to alter the compliance of the leaflet tissue to prevent prolapse and regurgitation.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices