Browse Technologies

Displaying 11 - 19 of 19


Thermoresponsive Printer Filament for Tissue Engineering

Vanderbilt researchers have developed a thermoresponsive filament material for use in 3D printing that can be readily dissolved via cooling. This material has use in a multitude of different applications. One potential application is lost-wax casting for tissue engineering. The present material enables the user to print an intricate vascular structure, embed the structure in an engineered tissue construct, and then dissolve the printed structure to create a hollow vascular network embedded within the tissue construct.


Licensing Contact

Philip Swaney

615.322.1067

Cooling-Triggered Self-Destructing Electronics

Vanderbilt University researchers have developed self-destructing electrical conductors that dissolve and vanish below a certain critical temperature, which is achieved either by actively cooling the circuit or by removing a heat source.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Leon Bellan, Xin Zhang

Accurate Gamma-Ray Spectroscope for Compositional Analysis of Celestial Bodies

Vanderbilt and Fisk University researchers have developed a new type of gamma ray spectroscope (GRS) that overcomes the limitations of current systems. This type of GRS can be used to accurately determine the subsurface chemical composition of celestial bodies in the solar system.


Licensing Contact

Chris Harris

615.343.4433

Dual Interlocked Logic (DIL) Circuit

Vanderbilt researchers have developed a novel combinatorial logic circuit that prevents the propagation of signal glitches such as those caused by radiation-induced transients. The interlocked-feedback circuit accomplishes this without the loss of any speed. The circuit is designed for robustness in both combinatorial and sequential logic applications.


Licensing Contact

Ashok Choudhury

615.322.2503

Nanostructured Molybdenum (IV) Disulfide (MoS2) Electrodes for use in Solar Cells

Quantum dot sensitized solar cells (QDSSCs) are a widely studied system for harvesting light and converting it to electrical energy. Quantum dots (QDs) are an attractive photoabsorber because they have large absorption coefficients and their energy of absorption in the visible region can be tuned based on their size. Molybdenum (IV) disulfide (MoS2) is a naturally occurring semiconductor found in nature as the mineral molybdenite that can be synthesized from inexpensive, earth-abundant materials for use in solar cells.


Licensing Contact

Chris Harris

615.343.4433

Porous Materials with Active Sites Created via In-Pore Synthesis

Vanderbilt researchers have synthesized porous adsorbent materials for the capture of toxic industrial chemicals. These adsorbent materials have finely dispersed reactive sites that allow for higher adsorption capacities than existing materials. They can be used in filters for the military, homeland security, first responders, and for a wide range of industrial and commercial catalysts to capture toxic gases such as ammonia and sulfur dioxide.


Licensing Contact

Philip Swaney

615.322.1067

Electrochemically Actuated Optical Modulator

Vanderbilt University researchers have developed a novel approach for creating dynamic, tunable reflective color displays using an electrochemical modulator. The technology can be implemented into devices requiring low power reflective color displays, such as smart watches and e-readers, and is adaptable for spectral control across a broad spectrum of frequencies from the visible to the far infrared. This technology provides a low power, tunable approach for modulating the optical properties of a material.


Licensing Contact

Philip Swaney

615.322.1067

3D Junction Bipolar Membranes: More Efficient and Reliable Electrodialysis

Vanderbilt researchers have developed a unique membrane material for more efficient and reliable eletrodialysis. By utilizing a 3D junction structure, the nanofiber bipolar membrane does not degrade or delaminate during high current passage unlike commercial 2D membranes that are currently available.


Licensing Contact

Masood Machingal

615.343.3548

Monopropellant-Powered Actuator

This proportional actuator developed at Vanderbilt University is a superior source of controllable power for mobile robots. It utilizes monopropellant or hypergolic bipropellant fuel sources in a controlled manner for more efficient and effective untethered mobile robots performing human mechanical tasks over a prolonged period of time.


Licensing Contact

Taylor Jordan

615.936.7505
Energy