Browse Technologies

Displaying 11 - 20 of 25


Novel anti-platelet therapy for treatment of thrombosis, cardiovascular disease, and cerebrovascular injury

One of the leading causes of deaths in developed countries is related to thromboembolism. PAR-4 (protease activated receptor-4) is one of two receptors on the human platelet that respond to thrombin, the central enzyme of coagulation.  Researchers here at Vanderbilt University have developed novel antagonists of PAR-4 that could be beneficial for patients allowing for normal hemostasis during treatment for thrombotic events.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Cardiovascular

Small Molecule Mediated Transcriptional Induction of E-Cadherin and Inhibition of Epithelial-to-mesenchymal Transition


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Oncology

Systems-Biology Infrastructure to Identify Drug Repurposing Opportunities as Antiviral & Anticancer Therapeutics

Vanderbilt researchers have developed an in-silico screening method to reveal new indications for existing drugs with known protein targets using a novel infrastructure. The infrastructure integrates multiple factors across system-biology models to create a drug discovery pipeline.


Licensing Contact

Janis Elsner

615.343.2430

Targeting microRNAs as a Treatment for Vascular Disease

Vanderbilt researchers have identified a highly expressed microRNA crucial in angiotensin induced hypertension; and developed a therapeutic strategy that focuses on local or systemic administration of antisense microRNA to inhibit microRNA expression as treatment for vascular diseases. Promising data in animal models reveals that the inhibition of such microRNA not only prevents fibrosis but also reverses previously established aortic stiffening.


Licensing Contact

Jody Hankins

615.322.5907

Small Molecule mGlu3 NAMs as Therapeutics for CNS Disorders

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics

mGlu3 NAMs as Therapeutics for Chemoresistant Tumors

Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).


Licensing Contact

Tom Utley

615.343.3852
Therapeutics

Cell-Permeable Socs Proteins That Inhibit Cytokine-Induced Signaling

Scientists at Vanderbilt have developed a unique polypeptide using cell-penetrating SOCS polypeptides or SOCS sequences designed to inhibits cytokine signaling and thus prevent or treat inflammation or an inflammatory related disease such as diabetes. This strategy has been validated in NOD mice models for either induced or naturally occurring diabetes and have been efficacious.


Licensing Contact

Janis Elsner

615.343.2430
Therapeutics

Natural product for seizure relief and long term disease modification in Dravet Syndrome

Dravet syndrome is a lifelong form of epilepsy beginning in early childhood. Children with Dravet syndrome suffer aggressive seizures, impaired cognition, and an increased risk of premature death. Dravet syndrome does not respond to conventional anti-epileptic drugs, and current treatment regimens fail to fully elevate seizures. No disease modifying treatments exist. Researchers at Vanderbilt University have discovered a novel application of a known natural product in treating Dravet syndrome. This natural product could be beneficial to children suffering from Dravet syndrome in both reducing seizures and treating the underlying disease cause.


Licensing Contact

Tom Utley

615.343.3852

Inventors

Jingqiong Kang
Therapeutics
Neuroscience/Neurology

Small Molecule-GIRK Potassium Channel Modulators That Are Anxiolytic Therapeutics

The G-protein activated, inward-rectifying potassium (K+) channels, "GIRKs", are a family of ion channels that has been the focus of intense research interest for nearly two decades. GIRK has been shown to play important roles in the pathophysiology of diseases such as anxiety, epilepsy, Down's syndrome, pain perception and drug addiction. Here scientists at Vanderbilt developed the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810) and demonstrated that ML297 is active in animal models of epilepsy. While the group is using ML297 to continue to explore the therapeutic benefits of GIRK modulation, they are continuing to develop more selective and druggable GIRK inhibitors from different scaffolds.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Analgesic

Antimicrobial Compounds and Methods of Use Thereof

Vanderbilt researchers, led by Eric Skaar, Ph.D., have identified novel compounds that are antimicrobial. These compounds represent a first in class as they target a new bacterial pathway that has never been targeted as an antimicrobial strategy.


Licensing Contact

Karen Rufus

615.322.4295
Therapeutics