Browse Technologies

Displaying 31 - 40 of 86


NMR Signal Amplification by Reversible Exchange (SABRE) in Water

Vanderbilt researchers have developed a method to perform the Parahydrogen Induced Polarization (PHIP) based method of Signal Amplification by Reversible Exchange (SABRE) in aqueous media. This allows the resulting hyperpolarized molecules to be used for in vivo applications.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Precision Pneumatic Robot for MRI-Guided Neurosurgery

At Vanderbilt University, a robotic steering mechanism for MRI-guided neurosurgical ablation has been developed. The small robot has submilimeter precision and is fully MRI compatible. It aims to replace current surgical practices with minimally invasive procedures in order to enhance the treatment of cancer and numerous neurological disorders such as epilepsy.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.


Licensing Contact

Taylor Jordan

615.936.7505

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan

615.936.7505

Rotary Planar Peristaltic Micropump (RPPM) and Rotary Planar Valve (RPV) for Microfluidic Systems

A Vanderbilt University research team led by Professor John Wikswo has developed low-cost, small-volume, metering peristaltic micropumps and microvalves. These pumps and valves can be used either as stand-alone devices incorporated into microfluidic subsystems, or as readily customized components for research or miniaturized point-of-care instruments, Lab-on-a-Chip devices, and disposable fluid delivery cartridges.


Licensing Contact

Ashok Choudhury

615.322.2503

Diagnostics Management Team

The sheer volume of medical information available to physicians today is overwhelming. Diagnostic Management Team provides a concise, accurate method for ordering the correct diagnostic tests every time, and it returns the results in a uniform report format, easily read by the physician. This has already been launched within Vanderbilt University, with a high adoption rate amongst physicians and has already shown significant savings.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Mary Zutter
Oncology

One-Step Hydrosilylation for Click Chemistry Compatible Surfaces

Vanderbilt inventors have developed a one-step hydrosilylation synthesis of azide surfaces for the preparation of click chemistry compatible substrates. In this process, an organic azide is formed in a single step on a hydrogen-terminated silicon support, yielding a surface that is ready to undergo click reactions as desired. Simple, efficient, and versatile, click chemistry is widely used and is particularly useful for biosensing applications. A click reaction can be utilized to attach a molecular or biological probe for point-of-care diagnostics and chemical screening.


Licensing Contact

Ashok Choudhury

615.322.2503

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

PIQASO: A rigid phantom for comprehensive end-to-end evaluation of online adaptive radiotherapy systems

There is currently no radiotherapy phantom capable of quantitatively assessing all components of an online adaptive radiotherapy (online ART) system in a comprehensive end-to-end test.Represented here is a novel, rigid phantom that can simultaneously evaluate an online ART system's image acquisition, deformable image registration, contour propagation, plan re-optimization, dose calculation, and beam delivery in a single process that is robust, quantitative, and convenient.


Licensing Contact

Masood Machingal

615.343.3548

Inexpensive Disposable Hydro-Jet Capsule Robot for Gastric Cancer Screening in Low-Income Countries

Gastric cancer is the second leading cause of cancer death worldwide. While screening programs have had a tremendous impact on reducing mortality, the majority of cases occur in low and middle-income countries (LMIC). Typically, screening for gastric and esophageal cancer is performed using a flexible endoscope; however, endoscopy resources for these settings are traditionally limited. With the development of an inexpensive, disposable system by Vanderbilt researchers, gastroscopy and colonoscopy can be facilitated in areas hampered by a lack of access to the appropriate means.


Licensing Contact

Masood Machingal

615.343.3548