Browse Technologies

Displaying 11 - 19 of 19


Electrochemically Actuated Optical Modulator

Vanderbilt University researchers have developed a novel approach for creating dynamic, tunable reflective color displays using an electrochemical modulator. The technology can be implemented into devices requiring low power reflective color displays, such as smart watches and e-readers, and is adaptable for spectral control across a broad spectrum of frequencies from the visible to the far infrared. This technology provides a low power, tunable approach for modulating the optical properties of a material.


Licensing Contact

Ashok Choudhury

615.322.2503

A Surfactant Based Low Molecular Weight Hydrogelator with Unprecedented Stability

Low molecular weight hydrogelator (LMHG) formulations are rare, but are preferred over polymeric hydrogels because of their improved biodegradability, biocompatibility and disintegration. Unfortunately, existing LMHGs often fall apart under slight environmental changes, seriously limiting their utility. However, the novel LMHG presented here is able to gelate >95% water in both acidic and basic forms, is robust to environmental changes, and has promising utility in controlled drug release, RNA delivery, tissue engineering, cosmetics, cancer therapy, biomaterials and other chemical industries, making it a promising new material for many different industries.


Licensing Contact

Philip Swaney

615.322.1067

High-Performance Anti-Fouling, Anti-Wetting Membrane for Wastewater Distillation

Vanderbilt researchers have developed a novel membrane for membrane distillation that is resistant to both fouling and wetting and can be used to treat highly contaminated saline wastewater.


Licensing Contact

Philip Swaney

615.322.1067

Nanostructured Molybdenum (IV) Disulfide (MoS2) Electrodes for use in Solar Cells

Quantum dot sensitized solar cells (QDSSCs) are a widely studied system for harvesting light and converting it to electrical energy. Quantum dots (QDs) are an attractive photoabsorber because they have large absorption coefficients and their energy of absorption in the visible region can be tuned based on their size. Molybdenum (IV) disulfide (MoS2) is a naturally occurring semiconductor found in nature as the mineral molybdenite that can be synthesized from inexpensive, earth-abundant materials for use in solar cells.


Licensing Contact

Chris Harris

615.343.4433

Electrospun Filter Media:Effective Removal of Salt Aerosols

Vanderbilt researchers have developed a specialized filter media to remove salt aerosols from the air. The filter media is able to be merged with other filter components to create a single filter for separating multiple types of airborne particles. Using the developed filter media provides more versatility and functionality to the manufacturing of filters for air and molecular purification products.


Licensing Contact

Ashok Choudhury

615.322.2503

Ferroelectric Nanofluids for Piezoelectric and Electro-Optic Uses

Researchers at Vanderbilt University have developed a new method of producing microscale and nanoscale ferroelectric fluids. These particles are useful in a variety of piezoelectric, pyroelectric, and electrooptic devices such as thin-film capacitors, electronic transducers, actuators, high-k dielectrics, pyroelectric sensors, and optical memories.


Licensing Contact

Chris Harris

615.343.4433

3D Junction Bipolar Membranes: More Efficient and Reliable Electrodialysis

Vanderbilt researchers have developed a unique membrane material for more efficient and reliable eletrodialysis. By utilizing a 3D junction structure, the nanofiber bipolar membrane does not degrade or delaminate during high current passage unlike commercial 2D membranes that are currently available.


Licensing Contact

Ashok Choudhury

615.322.2503

Porous Silicon Membrane Waveguide Biosensor

Vanderbilt researchers have developed a low-cost, high sensitivity sensor based on a porous silicon (PSi) membrane waveguide. This sensor is designed to be a cost-effective alternative to conventional fiber optic and SPR sensors for both biosensing and chemical sensing applications.


Licensing Contact

Yiorgos Kostoulas

615.322.9790

Chemical Sensor Utilizing a Chemically Sensitive Electrode in Combination with Thin Diamond Layers

Vanderbilt researchers have developed a novel solid state chemical sensor using CVD diamond film. The system utilizes polycrystalline diamond technology combined with chemically-sensitive electrode layers to achieve high sensitivity and selectivity for a variety of chemical species.


Licensing Contact

Ashok Choudhury

615.322.2503