Browse Technologies

Displaying 41 - 50 of 62


Upper Extremity Assistance Device

An assistive device for individuals with upper extremity neuromuscular deficit has been developed by researchers at Vanderbilt. This device is specifically designed for patients having hemiplegia following stroke, incomplete spinal cord injury, multiple sclerosis, and other disabilities and conditions, who may have severe muscle weakness or inability to fully control an upper limb. In order to facilitate use of the upper limb, the patient can wear the device as a substitute for or a supplement to the patient's volitional movement.


Licensing Contact

Ashok Choudhury

615.322.2503

Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Ashok Choudhury

615.322.2503

Continuum Robots with Sensing Capabilities to Adapt Structure

Vanderbilt researchers have developed a continuum robot with the ability to adapt both its length and diameter of its segments. This could help expand the usability and effectiveness of continuum robots.


Licensing Contact

Masood Machingal

615.343.3548
Robotics

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Philip Swaney

615.322.1067

Automated Inflatable Binder to Counter the Effects of Orthostatic Hypotension

Vanderbilt scientists have developed an automated inflatable abdominal binder that can detect when a patient moves from a prone or sitting positon to a standing position and automatically apply a sustained servo-controlled compression pressure in order to counter the effects of OH. The binder is as effective as conventional drug therapy in controlling OH, without subjecting patients to potentially harmful side effects and interactions with other medications.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices
Cardiovascular

Local Magnetic Actuation for Obese And Pediatric Patients

Researchers in Vanderbilt University's STORM Lab have developed a novel actuation system that uses magnetic coupling to transmit mechanical power across a physical barrier. This technology is particularly suited for use in minimally invasive surgical procedures for manipulating surgical instruments across tissue barriers.


Licensing Contact

Masood Machingal

615.343.3548
Robotics
Gastrointestinal

Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Ashok Choudhury

615.322.2503

Real-time Detection of Position and Orientation of Wireless Endoscopy Capsule using Magnetic coupling

Vanderbilt researchers have developed a new system to detect the position, orientation, and pressure exerted on surrounding tissues of a wireless capsule endoscopy device.  Magnetic coupling is one of the few physical phenomena capable of transmitting actuation forces across a physical barrier.  Magnetic manipulation has the potential to make surgery less invasive, by allowing untethered miniature devices to enter the body through natural orifices or tiny incisions, and then maneuver with minimal disruption to healthy tissue.  In order to accomplish this goal, the pose (position and orientation) of the medical device must be available in real time.


Licensing Contact

Masood Machingal

615.343.3548

Synthesis and Characterization of New Terpolymers

Vanderbilt researchers have developed a novel method for synthesizing a new class of terpolymers with tunable mechanical and chemical properties for coronary stent applications.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Tentacle-Like Robots to Access Tight Spaces in Manufacturing and Medical Applications

Vanderbilt researchers have developed a novel method for enabling tentacle-like robots to reach into tight spaces in manufacturing or medical applications. This is useful for industrial inspection tasks, assembly of products like airplane wings with complex geometry, or making medical endoscopes reach places in the body they cannot reach today. The new invention involves routing actuation wires along a flexible arm through curved paths along the robot


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices