Browse Technologies

Displaying 21 - 30 of 69


Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexible Instrument with Pre-curved Elements for Surgical Tools

Vanderbilt researchers have developed a novel system for allowing surgical instruments to navigate around tighter corners and access difficult-to-reach areas in the body. This system uses pre-curved elastic elements added on to the existing instrument. Current surgical instruments are manufactured in a straight-line configuration, which means they must bend in order to reach around obstructions in surgery. By adding pre-curved sections, some of the bending is already accomplished, allowing the instrument to bend around tighter corners.


Licensing Contact

Ashok Choudhury

615.322.2503

Guide Wire Torque Device for Interventional Medical Procedures

Vanderbilt University researchers have created a torque device that allows surgeons to apply better torque and grip to guide wires used in interventional medical procedures.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Michael Nichols
Medical Devices

Methods for Quick and Safe Deep Access into Mammalian Anatomy

This technology uses a novel continuum robot that provides a steerable channel to enable safe surgical access to the anatomy of a patient. This robotic device has a wide range of clinical application and is a significant advance from the rigid tools currently used in minimally invasive procedures.


Licensing Contact

Masood Machingal

615.343.3548
Robotics

Miniature Optical Coherence Tomography Probe for Real-time Monitoring of Surgery

Vanderbilt researchers have designed a forward scanning miniature intraoperative Optical Coherence Tomography (OCT) probe that can be used for diagnostic purposes and real-time monitoring of surgery within small spaces, such as endoscopic surgery, intraocular surgery, and other microsurgery.


Licensing Contact

Taylor Jordan

615.936.7505

Minimally Invasive Telerobotic Platform for Transurethral Exploration and Intervention

This technology, developed in Vanderbilt University's Advanced Robotics and Mechanism Applications Laboratory, uses a minimally invasive telerobotic platform to perform transurethral procedures, such as transurethral resection. This robotic device provides high levels of precision and dexterity that improve patient outcomes in transurethral procedures.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices
Genitourinary

Precision Pneumatic Robot for MRI-Guided Neurosurgery

At Vanderbilt University, a robotic steering mechanism for MRI-guided neurosurgical ablation has been developed. The small robot has submilimeter precision and is fully MRI compatible. It aims to replace current surgical practices with minimally invasive procedures in order to enhance the treatment of cancer and numerous neurological disorders such as epilepsy.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.


Licensing Contact

Taylor Jordan

615.936.7505

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan

615.936.7505