Browse Technologies

Displaying 41 - 50 of 66


Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Ashok Choudhury

615.322.2503

Easy to Use Patient Immobilizer for Stabilizing Limbs During MRI Imaging

Vanderbilt students have created a stabilization system for secure and stable MRI positioning of hands, wrists, knees, shoulders, and the lower back, using affordable, easy to use, and readily available materials. The system effectively reduces image blurring using a non-irritating film and a supportive frame. This device can simultaneously improve MRI diagnosis, enhance the patient experience, and minimize the time and financial burdens of image retakes.


Licensing Contact

Masood Machingal

615.343.3548

Automated Inflatable Binder to Counter the Effects of Orthostatic Hypotension

Vanderbilt scientists have developed an automated inflatable abdominal binder that can detect when a patient moves from a prone or sitting positon to a standing position and automatically apply a sustained servo-controlled compression pressure in order to counter the effects of OH. The binder is as effective as conventional drug therapy in controlling OH, without subjecting patients to potentially harmful side effects and interactions with other medications.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices
Cardiovascular

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Inexpensive Disposable Hydro-Jet Capsule Robot for Gastric Cancer Screening in Low-Income Countries

Gastric cancer is the second leading cause of cancer death worldwide. While screening programs have had a tremendous impact on reducing mortality, the majority of cases occur in low and middle-income countries (LMIC). Typically, screening for gastric and esophageal cancer is performed using a flexible endoscope; however, endoscopy resources for these settings are traditionally limited. With the development of an inexpensive, disposable system by Vanderbilt researchers, gastroscopy and colonoscopy can be facilitated in areas hampered by a lack of access to the appropriate means.


Licensing Contact

Masood Machingal

615.343.3548

Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Ashok Choudhury

615.322.2503

A Device and Method for Vascular or Nerve Separation and Bridging

Vanderbilt researchers have designed a device and method for separating an arteriole that passes over a vein and restricts the passage of blood flow in the eye, which if uncorrected can lead to hemorrhage and vision loss. The device surgically separates the two vessels and then places a stent or bridge between them to alleviate compression. Visualization during the procedure is provided with optical coherence tomography (OCT), and the surgical tool can be either hand-held or robotic.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Method for Non-Invasive Complete Vascular Occlusion Using MR Guided Focused Ultrasound Surgery

Researchers have developed a non-invasive method for creating vascular occlusions at specific locations within a vessel using magnetic resonance guided focused ultrasound (MRgFUS). The speed and efficacy of this approach is better than traditional vascular occlusion methods, and the method can be further enhanced through the use of phase shift nano-droplets. The approach is even applicable to large vessels that can be extremely challenging to ablate due to the heat sink effect. Ultimately, the ability to occlude selected vasculature could aid in the treatment of vascular malformations, hemorrhage control, and tumor devascularization.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

Adjustable Universal Platform for Surgical Navigation, Approach, and Implantation

Vanderbilt researchers have developed an adjustable universal platform for stereotactic neurosurgery. The device enables quick and accurate correction of probe position and trajectory.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Synthesis and Characterization of New Terpolymers

Vanderbilt researchers have developed a novel method for synthesizing a new class of terpolymers with tunable mechanical and chemical properties for coronary stent applications.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices