Browse Technologies

Displaying 1 - 10 of 44


Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.


Licensing Contact

Ashok Choudhury

615.322.2503

Inhibition of Selected microRNAs May Induce Atherosclerosis Regression, Particularly in Patients with Chronic Kidney Disease

A research project to identify microRNAs (miRs) as biomarkers for atherosclerosis in patients with chronic kidney disease is now exploiting an antisense microRNA (anti-miR) therapeutic strategy directed to the inhibition of either one or two target miRs in combination.


Licensing Contact

Jody Hankins

615.322.5907
Cardiovascular

New Clostridium Difficile Recombinant Toxin for Safe Vaccine Development

A structural biology approach has identified a conserved region common to multiple Clostridium toxins. Specific mutations of the protein sequence in this region prevent the toxins from entering into intestinal cells, thereby preventing widespread tissue damage. These recombinant Clostridium toxins may be used to create a multivalent vaccine to protect against multiple species of Clostridium. Furthermore, the recombinant toxin may be used as a safer alternative to the native toxins in vaccine manufacturing. This discovery stems from a collaboration between the laboratories of Dr. Borden Lacy of Vanderbilt University and Dr. Roman Melnyk of the Hospital for Sick Children.


Licensing Contact

Jody Hankins

615.322.5907

Novel anti-platelet therapy for treatment of thrombosis, cardiovascular disease, and cerebrovascular injury

One of the leading causes of deaths in developed countries is related to thromboembolism. PAR-4 (protease activated receptor-4) is one of two receptors on the human platelet that respond to thrombin, the central enzyme of coagulation.  Researchers here at Vanderbilt University have developed novel antagonists of PAR-4 that could be beneficial for patients allowing for normal hemostasis during treatment for thrombotic events.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Cardiovascular

Small Molecule Mediated Transcriptional Induction of E-Cadherin and Inhibition of Epithelial-to-mesenchymal Transition


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Oncology

Targeting microRNAs as a Treatment for Vascular Disease

Vanderbilt researchers have identified a highly expressed microRNA crucial in angiotensin induced hypertension; and developed a therapeutic strategy that focuses on local or systemic administration of antisense microRNA to inhibit microRNA expression as treatment for vascular diseases. Promising data in animal models reveals that the inhibition of such microRNA not only prevents fibrosis but also reverses previously established aortic stiffening.


Licensing Contact

Jody Hankins

615.322.5907

BMX as a Molecular Target for Radiosensitizing Agents

Provided are methods for modulating the proliferation of cells and tissues. In some embodiments, the methods include administering to a subject an effective amount of a modulator of a biological activity of a bone marrow X kinase (Bmx) gene product. Also provided are methods for increasing the radiosensitivity of a target cell or tissue, methods for suppressing tumor growth, methods for inhibiting tumor blood vessel growth, and compositions that include modulators of a biological activity of a bone marrow X kinase (Bmx) gene product.


Licensing Contact

Taylor Jordan

615.936.7505
Therapeutics

FOXA1 as a Biomarker for Urinary Bladder Cancer

In 2009 over 70,000 American were diagnosed with urinary bladder cancer, and in that same year over 14,000 Americans died of bladder cancer. Low funding for bladder cancer helps explain the slow progress in both the identification of biomarkers and the development of new treatments for metastatic bladder cancer. Nonetheless, novel diagnostic biomarkers are needed to aid in the early identification of patients with bladder cancer, and also to determine which patients are likely to progress. Vanderbilt researchers have identified such a biomarker whose expression is reduced and lost during progression of bladder cancer.


Licensing Contact

Karen Rufus

615.322.4295

Human Monoclonal Antibodies to Infectious Diseases

Using human B cell hybridoma creation, and antibody engineering technologies, Dr. James E Crowe Jr.'s laboratory has developed an array of antibodies from full length human antibodies to Fab fragments and diabodies. Many of these antibodies are ready for a cooperate partner who can further develop these antibodies into biologic herapeutics. The table below is a sample of the antibodies they are currently researching and have available. In addition to these areas of research, Dr. Crowe is actively seeking collaborative opportunities to identify new interesting targets for future antibody engineering projects.


Licensing Contact

Jody Hankins

615.322.5907

Inhibitors of Inward-Rectifying Potassium Channels (Insecticide)

This research targets IRK.


Licensing Contact

Tom Utley

615.343.3852