Browse Technologies

Displaying 1 - 8 of 8


Smart Battery Controller with Fault Tolerance

Vanderbilt researchers have developed a smart controller that intelligently reconfigures a battery bank to both extend the overall discharge time and provide fault tolerance.


Licensing Contact

Chris Harris

615.343.4433

Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexible Instrument with Pre-curved Elements for Surgical Tools

Vanderbilt researchers have developed a novel system for allowing surgical instruments to navigate around tighter corners and access difficult-to-reach areas in the body. This system uses pre-curved elastic elements added on to the existing instrument. Current surgical instruments are manufactured in a straight-line configuration, which means they must bend in order to reach around obstructions in surgery. By adding pre-curved sections, some of the bending is already accomplished, allowing the instrument to bend around tighter corners.


Licensing Contact

Ashok Choudhury

615.322.2503

Early Damage and Imbalance Detection of Wind Turbine Rotors using Minimal Sensing

Vanderbilt University researchers have developed a novel detection system that provides knowledge of early damage and imbalance for wind turbine rotors using minimal sensing.


Licensing Contact

Ashok Choudhury

615.322.2503

Electrospun Filter Media:Effective Removal of Salt Aerosols

Vanderbilt researchers have developed a specialized filter media to remove salt aerosols from the air. The filter media is able to be merged with other filter components to create a single filter for separating multiple types of airborne particles. Using the developed filter media provides more versatility and functionality to the manufacturing of filters for air and molecular purification products.


Licensing Contact

Ashok Choudhury

615.322.2503

Porous Materials with Active Sites Created via In-Pore Synthesis

Vanderbilt researchers have synthesized porous adsorbent materials for the capture of toxic industrial chemicals. These adsorbent materials have finely dispersed reactive sites that allow for higher adsorption capacities than existing materials. They can be used in filters for the military, homeland security, first responders, and for a wide range of industrial and commercial catalysts to capture toxic gases such as ammonia and sulfur dioxide.


Licensing Contact

Ashok Choudhury

615.322.2503

Dual Interlocked Logic (DIL) Circuit

Vanderbilt researchers have developed a novel combinatorial logic circuit that prevents the propagation of signal glitches such as those caused by radiation-induced transients. The interlocked-feedback circuit accomplishes this without the loss of any speed. The circuit is designed for robustness in both combinatorial and sequential logic applications.


Licensing Contact

Ashok Choudhury

615.322.2503

Accurate Gamma-Ray Spectroscope for Compositional Analysis of Celestial Bodies

Vanderbilt and Fisk University researchers have developed a new type of gamma ray spectroscope (GRS) that overcomes the limitations of current systems. This type of GRS can be used to accurately determine the subsurface chemical composition of celestial bodies in the solar system.


Licensing Contact

Chris Harris

615.343.4433