Browse Technologies

Displaying 1 - 5 of 5


New Clostridium Difficile Recombinant Toxin for Safe Vaccine Development

A structural biology approach has identified a conserved region common to multiple Clostridium toxins. Specific mutations of the protein sequence in this region prevent the toxins from entering into intestinal cells, thereby preventing widespread tissue damage. These recombinant Clostridium toxins may be used to create a multivalent vaccine to protect against multiple species of Clostridium. Furthermore, the recombinant toxin may be used as a safer alternative to the native toxins in vaccine manufacturing. This discovery stems from a collaboration between the laboratories of Dr. Borden Lacy of Vanderbilt University and Dr. Roman Melnyk of the Hospital for Sick Children.


Licensing Contact

Jody Hankins

615.322.5907

Traveler's Diarrhea Vaccine for Enterotoxigenic E. coli (ETEC)

Vanderbilt researchers are developing a novel vaccine for preventing enterotoxigenic Escherichia coli (ETEC) infection of the gut which causes traveler's diarrhea and childhood death in developing countries. The vaccine uses colonization surface antigens and their constituent proteins to generate an immune response. This prevents infection by blocking the ability of bacteria to adhere to the intestinal mucosa. Mice treated with this vaccine showed significantly reduced disease and bacterial colonization compared to control. Preclinical development of this vaccine is ongoing and includes testing of different adjuvants and routes of administration. ETEC is a leading cause of gastrointestinal disease in developing countries affecting both residents and visitors. Residents in particular are primarily children who suffer high morbidity and mortality from the dehydrating effects of the illness. Visitors include the approximately 800 -- 1000 million people who travel to developing countries each year with 20 -- 60 % of them developing this illness. A commercially available vaccine to inoculate residents and travelers against ETEC would represent a significant opportunity to satisfy an unmet need and improve human health.


Licensing Contact

Jody Hankins

615.322.5907

Human Monoclonal Antibodies to Infectious Diseases

Using human B cell hybridoma creation, and antibody engineering technologies, Dr. James E Crowe Jr.'s laboratory has developed an array of antibodies from full length human antibodies to Fab fragments and diabodies. Many of these antibodies are ready for a cooperate partner who can further develop these antibodies into biologic herapeutics. The table below is a sample of the antibodies they are currently researching and have available. In addition to these areas of research, Dr. Crowe is actively seeking collaborative opportunities to identify new interesting targets for future antibody engineering projects.


Licensing Contact

Jody Hankins

615.322.5907

Live Attenuated Coronavirus Vaccines

The present invention is directed live, attenuated coronavirus vaccines. The vaccine comprises a viral genome encoding a p59 protein having at mutation at a specific tyrosine residue, and may include other attenuating mutations. Such viruses show reduced growth and pathogenicity in vivo.


Licensing Contact

Mike Villalobos

615.322.6751

Inventors

Mark Denison
Vaccines

Plasmid Based Reverse Genetics for Reovirus

Scientists at Vanderbilt have developed an entirely plasmid-based system to better utilize reoviruses as a research tool. The system allows for generating a reovirus entirely from cloned cDNAs comprising three steps involving fairly well-known techniques.


Licensing Contact

Mike Villalobos

615.322.6751