Browse Technologies

Displaying 1 - 10 of 12


Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.


Licensing Contact

Ashok Choudhury

615.322.2503

A Robotic System for Treating Intracranial Hemorrhage (ICH)

Vanderbilt researchers have designed a general purpose system for precise steering of multi-lumen needles. One significant application of the system is decompression of the cranium during hemorrhagic events (ICH).


Licensing Contact

Ashok Choudhury

615.322.2503

Algorithms for Contact Detection and Contact Localization in Continuum Robots

This technology enhances the capabilities of continuum robots by not only detecting contact during movement but also estimating the position of the contact during the movements executed by the robot. An algorithmic feedback loop can then constrain the movement of the robot to avoid damage to its robot arm, damage to another robot arm or damage to surrounding structure. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Ashok Choudhury

615.322.2503

Coordinated Control for Arm Prosthesis

Researchers at Vanderbilt have created a novel control of an (myoelectric) arm prosthesis consisting of at least an elbow joint with the possibility of an additional single or multi-axis wrist joint.


Licensing Contact

Ashok Choudhury

615.322.2503

Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexible Instrument with Pre-curved Elements for Surgical Tools

Vanderbilt researchers have developed a novel system for allowing surgical instruments to navigate around tighter corners and access difficult-to-reach areas in the body. This system uses pre-curved elastic elements added on to the existing instrument. Current surgical instruments are manufactured in a straight-line configuration, which means they must bend in order to reach around obstructions in surgery. By adding pre-curved sections, some of the bending is already accomplished, allowing the instrument to bend around tighter corners.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexure Wrist for Surgical Devices

Vanderbilt researchers have designed a flexible wrist for use with manual or robotic surgical systems.


Licensing Contact

Ashok Choudhury

615.322.2503

Inexpensive Disposable Hydro-Jet Capsule Robot for Gastric Cancer Screening in Low-Income Countries

Gastric cancer is the second leading cause of cancer death worldwide. While screening programs have had a tremendous impact on reducing mortality, the majority of cases occur in low and middle-income countries (LMIC). Typically, screening for gastric and esophageal cancer is performed using a flexible endoscope; however, endoscopy resources for these settings are traditionally limited. With the development of an inexpensive, disposable system by Vanderbilt researchers, gastroscopy and colonoscopy can be facilitated in areas hampered by a lack of access to the appropriate means.


Licensing Contact

Masood Machingal

615.343.3548

Local Magnetic Actuation for Obese And Pediatric Patients

Researchers in Vanderbilt University's STORM Lab have developed a novel actuation system that uses magnetic coupling to transmit mechanical power across a physical barrier. This technology is particularly suited for use in minimally invasive surgical procedures for manipulating surgical instruments across tissue barriers.


Licensing Contact

Masood Machingal

615.343.3548
Robotics
Gastrointestinal

Methods for Quick and Safe Deep Access into Mammalian Anatomy

This technology uses a novel continuum robot that provides a steerable channel to enable safe surgical access to the anatomy of a patient. This robotic device has a wide range of clinical application and is a significant advance from the rigid tools currently used in minimally invasive procedures.


Licensing Contact

Ashok Choudhury

615.322.2503
Robotics