Browse Technologies

Displaying 1 - 10 of 18


Compliant Insertion, Motion, and Force Control of Continuum Robots

Vanderbilt researchers have developed a framework for compliant insertion with hybrid motion and force control of continuum robots. This technology expands the capabilities of robotic surgery by providing continuum robots with the ability to autonomously discern, locate, and react to contact along their length and calculate forces at the tip, thus enabling quick and safe deployment of snake-like robots into deep anatomical passages or unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

MemoryMonitor: A real-time neuroscientific learning monitor that knows whether you will later remember something you see

We all wish that we could know if we were going to later remember something, the moment that new information enters our brain. For example, if we could predict whether our children would later remember a vocabulary word, then we could have them spend more time on the words they will not remember. A group of neuroscientists at Vanderbilt University has developed a way of measuring and analyzing brain activity that achieves this goal of predicting later memory as we study and view new information. The procedure involves measuring brainwaves from just two electrodes on the head as people view pictures, words, or virtually any kind of information that a person hopes to remember later.


Licensing Contact

Masood Machingal

615.343.3548

Model-based Compression Correction Framework for Ultrasound

Vanderbilt researchers have developed a system that corrects for compressional effects in ultrasound data during soft tissue imaging. The system uses tracking and digitization information to detect the pose of the ultrasound probe during imaging, and then couples this information with a biomechanical model of the tissue to correct compressional effects during intraoperative imaging.


Licensing Contact

Philip Swaney

615.322.1067

System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

Automated clinical documentation software for emergency medical environments

Vanderbilt researchers have developed a system to automatically detect different clinical procedures in order to prevent information loss through patient transfers in emergency situations.


Licensing Contact

Masood Machingal

615.343.3548

Innovative Mobile App that Facilitates Self-Management in Diabetes

Vanderbilt researchers have developed the MyDay mobile app (iOS/Android) designed to collect, integrate, and provide feedback on a wide range of individual data relevant for diabetes self-management which allows flexible creation of data collection content, format, and timing.


Licensing Contact

Masood Machingal

615.343.3548

Dual Interlocked Logic (DIL) Circuit

Vanderbilt researchers have developed a novel combinatorial logic circuit that prevents the propagation of signal glitches such as those caused by radiation-induced transients. The interlocked-feedback circuit accomplishes this without the loss of any speed. The circuit is designed for robustness in both combinatorial and sequential logic applications.


Licensing Contact

Ashok Choudhury

615.322.2503

pECHO: Easy to Use Smartphone App for Assisting in Transesophageal Echocardiography Exam

Transesophageal echocardiography (TEE) is a test that uses high-frequency sound waves to create images of the heart. It provides more detail that a standard echocardiogram. Vanderbilt researchers have created a software that creates an easy to follow, step-by-step procedure for a transesophageal echocardiography exam.


Licensing Contact

Masood Machingal

615.343.3548

Image-Guided Navigation System for Endoscopic Eye Surgery

A flexible endoscope for ophthalmic orbital surgery is presented. The endoscope has illuminating fiber, image fiber and a free conduit to deliver purge gas/fluid in addition to instruments such as ablation instruments, coagulating instrument or a medication delivery instrument.


Licensing Contact

Philip Swaney

615.322.1067