Browse Technologies

Displaying 1 - 10 of 18


"Anode-Free" Sodium Metal Battery

Vanderbilt researchers have developed a new "anode-free" battery architecture for sodium-ion batteries that provide energy densities in excess of 400Wh/kg, which is greater than the maximum theoretical energy density of a conventional lithium-ion battery.


Licensing Contact

Ashok Choudhury

615.322.2503

Inventors

Adam Cohn, Cary Pint
Energy

3D Junction Bipolar Membranes: More Efficient and Reliable Electrodialysis

Vanderbilt researchers have developed a unique membrane material for more efficient and reliable eletrodialysis. By utilizing a 3D junction structure, the nanofiber bipolar membrane does not degrade or delaminate during high current passage unlike commercial 2D membranes that are currently available.


Licensing Contact

Ashok Choudhury

615.322.2503

Early Damage and Imbalance Detection of Wind Turbine Rotors using Minimal Sensing

Vanderbilt University researchers have developed a novel detection system that provides knowledge of early damage and imbalance for wind turbine rotors using minimal sensing.


Licensing Contact

Ashok Choudhury

615.322.2503

Electrospun Filter Media:Effective Removal of Salt Aerosols

Vanderbilt researchers have developed a specialized filter media to remove salt aerosols from the air. The filter media is able to be merged with other filter components to create a single filter for separating multiple types of airborne particles. Using the developed filter media provides more versatility and functionality to the manufacturing of filters for air and molecular purification products.


Licensing Contact

Philip Swaney

615.322.1067

High Performance Battery Electrodes Using Electrospun Nanofibers

A Vanderbilt researcher has developed a new battery electrode that uses particle/polymer electrospun nanofiber mats to increase energy density and decrease the required charge time for the battery. The technique can be used with any high energy density metal-ion batteries such as lithium-ion or sodium-ion.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Peter Pintauro
Energy

Bright White Light Nanocrystals for LEDs

A research team lead by Professor Sandra Rosenthal at Vanderbilt University has developed nanocrystals (~2 nm diameter) that emit white light with very high quantum efficiency. This technology would be a viable cost effective candidate for commercial solid-state lighting applications, such as Light Emitting Diodes (LEDs). These nanocrystals were originally discovered by the same group in 2005; a recent breakthrough in post-treatment results in improving fluorescent quantum yield up to ~ 45%.


Licensing Contact

Chris Harris

615.343.4433

Load-Bearing Energy Storage Composites from Porous Materials and Methods for Production Thereof

A team of Vanderbilt engineers has developed a multifunctional, loadbearing solid-state supercapacitor to simultaneously store energy and withstand static and dynamic mechanical stresses.


Licensing Contact

Ashok Choudhury

615.322.2503
Energy

Nanofiber Composite Membranes for Alkaline Fuel Cells

A new nanofiber composite membrane morphology and fabrication scheme has been developed at Vanderbilt University to be used for alkaline anion-exchange membrane fuel cells (AAEMFCs). This membrane has high hydroxyl ion conductivity, good mechanical properties, long term chemical stability and low water swelling. Additionally it is well suited for harsh conditions including high temperature and low humidity.


Licensing Contact

Ashok Choudhury

615.322.2503
Energy

Nanostructured Molybdenum (IV) disulfide (MoS2) Electrodes

The most common counter electrode materials used for in Quantum dot sensitized solar cells (QDSSCs) quickly become poisoned by sulfide, resulting in significant current drops, which lowers solar cell efficiencies and makes them unsuitable for long-term use in a device. Also, some of these materials are rare and expensive, so replacing them with an inexpensive, earth-abundant material is a desirable goal. This invention uses a Mo foil to produce the desired uniform growth of Molybdenum (IV) disulfide (MoS2) petals from the Mo foil, making the foil both the source of Mo as well as the substrate. This petaled MoS2 electrode shows a vastly improved polysulfide reduction compared to Glassy Carbon, ordinary Mo foil, Pt and Au. The petaled MoS2 electrode lost only 0.63% of its initial current density at -1 V whereas Pt lost 13.58% after only five scans, indicating the petaled MoS2 films are highly stable as cathodes. The technology was tested in a solar device setting, using standard photoanodes to test the efficiency of a device employing petaled MoS2 as its cathode. Devices in which a petaled MoS2 cathode was used achieved nearly fivefold improvement in efficiency over those employing a Pt cathode.


Licensing Contact

Chris Harris

615.343.4433

Through the Tool Tracking for Friction Stir Welding

Utilizing force sensors mounted on the friction stir welding tool, Vanderbilt inventors have developed a technique to keep a weld tool on track. This technology is especially benefi cial in real time corrections for deviations in travel in the case of robotic FSW or ""blind"" welds. The technique is cost- effective in that no additional sensors such as cameras, thermocouples, acoustic emission receivers, etc. are required.


Licensing Contact

Ashok Choudhury

615.322.2503
Energy