Browse Technologies

Displaying 91 - 100 of 238


Low-Cost Non-Invasive Handheld Ultrasound Device for Measuring Tissue Stiffness

Vanderbilt University researchers have developed a hand-held device to quantitatively measure tissue stiffness for medical monitoring. This device is non-invasive, low-cost, and can be used at the point of care.


Licensing Contact

Masood Machingal

615.343.3548

Wearable Metabolic Rate Sensor

Vanderbilt researchers have developed a portable, non-invasive sensor system that can take measurements through the skin to provide insights into metabolic rate and energy expenditure outside of a clinical setting. Existing methods for estimating metabolic rate rely on comparisons between user-reported body parameters and population averages, which can result in inaccurate estimates. Additionally, existing portable devices that provide estimates of metabolic rate are limited by factors such as cost per use and frequency of measurement. The present technology overcomes these limitations and can be directly integrated with commercial wearable devices for an accurate assessment of metabolic rate.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

Cell-Permeable Socs Proteins That Inhibit Cytokine-Induced Signaling

Scientists at Vanderbilt have developed a unique polypeptide using cell-penetrating SOCS polypeptides or SOCS sequences designed to inhibits cytokine signaling and thus prevent or treat inflammation or an inflammatory related disease such as diabetes. This strategy has been validated in NOD mice models for either induced or naturally occurring diabetes and have been efficacious.


Licensing Contact

Janis Elsner

615.343.2430
Therapeutics

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Peripheral Nerve Catheter Advancer

A Vanderbilt clinician has developed a device capable of allowing a single practitioner to control both the needle and the catheter while using an ultrasound probe to place a nerve block. A nerve block involves the placement of anesthetic and other agents onto or near a nerve in order to temporarily disrupt the signal traveling along the nerve. To place a nerve block, a needle is inserted into the patient and a catheter is thread through the needle to inject the block. An ultrasound probe is used to identify placement of the catheter and nerve block. Current catheter advancement techniques require one clinician to hold the needle and control the catheter while a second person maneuvers the ultrasound probe to accurately deliver the nerve block. The proper placement of the nerve block is highly dependent on the coordination between the two individuals. Relying on a second individual can result in misplaced nerve blocks or prolong the placement process. The novel catheter advancer eliminates the need for a second clinician and makes the placement faster and more accurate.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

A Method to Obtain Uniform Radio Frequency Fields in the Body for High Field MRI

Researchers at Vanderbilt have created a new approach to produce uniform radio frequency (RF) fields in the body during high field magnetic resonance imaging (MRI). Existing high field MRI machines create non-uniform RF fields that lead to non-uniform sensitivity in the generated images, also referred to as "hot" and "cold" spots. These local variations interfere with the tissue contrast of the images that radiologists depend upon to make accurate diagnoses. By generating uniform RF fields in the body, this technology provides the benefits of high field MRI without the non-uniform RF fields.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Accurate Gamma-Ray Spectroscope for Compositional Analysis of Celestial Bodies

Vanderbilt and Fisk University researchers have developed a new type of gamma ray spectroscope (GRS) that overcomes the limitations of current systems. This type of GRS can be used to accurately determine the subsurface chemical composition of celestial bodies in the solar system.


Licensing Contact

Chris Harris

615.343.4433

Actively Reconfigurable Metasurfaces for Dynamic Optical Components

Phase change materials (PCMs) are a fascinating class of materials that can change certain material properties (e.g., absorbance or reflectivity) upon the application of a stimulus. Researchers at Vanderbilt University have used a PCM to create a novel metamaterial that can be reconfigured for use in a wide range of potential optical and integrated photonic applications from the infrared to terahertz spectral domain.


Licensing Contact

Philip Swaney

615.322.1067

Adjustable Universal Platform for Surgical Navigation, Approach, and Implantation

Vanderbilt researchers have developed an adjustable universal platform for stereotactic neurosurgery. The device enables quick and accurate correction of probe position and trajectory.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Advanced Method for Data Corrections in Organ Deformation

A group of Vanderbilt University researchers have developed a solution that will correct for the mis-registration of image data in image-guided surgery. The solution uses software to correct for any mis-registration that is caused by the presence of intraoperative deformations. This invention helps to improve the performance and capabilities of image-guided surgery.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging