Browse Technologies

Displaying 81 - 90 of 262


TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

Ultrasonic Sensor for Non-intrusive Local Temperature, Transient Temperature and Heat Flux Measurements

An apparatus for measuring the temperature and heat flux of materials through the use of an ultrasonic sensor has been developed at Vanderbilt University. The sensor uses acoustic measurement techniques to determine the heat flux and temperature of material surfaces otherwise inaccessible in particular during system operation in order to enhance monitoring capabilities and reduce unsafe or impaired function due to extreme temperatures.


Licensing Contact

Ashok Choudhury

615.322.2503

Cuffed Inner Cannula and Flexible Outer Cannula Tracheostomy Tube

This new tracheostomy tube design prevents the need for decannulation when changing from a cuffed to cuffless (or vice versa) tracheostomy. It also enables a comfortable and fit in patients with both large and small neck diameters. The tube enhances patient safety by maintaining the airway at all times when downsizing or upsizing.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

Heterogeneous catalysis of NMR Signal Amplification by Reversible Exchange(SABRE)

Vanderbilt researchers have developed heterogeneous catalysis and catalyst for the NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization process. Coupled with the researchers' development of a method to perform SABRE in aqueous solutions, this discovery could allow fully biocompatible SABRE hyperpolarization processes in water with catalyst recycling. This would allow the production of pure aqueous contrast agents requiring only parahydrogen as a consumable.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Precision Pneumatic Robot for MRI-Guided Neurosurgery

At Vanderbilt University, a robotic steering mechanism for MRI-guided neurosurgical ablation has been developed. The small robot has submilimeter precision and is fully MRI compatible. It aims to replace current surgical practices with minimally invasive procedures in order to enhance the treatment of cancer and numerous neurological disorders such as epilepsy.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

PosiSeat(TM): Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.


Licensing Contact

Taylor Jordan

615.936.7505

Selective Size Imaging using Filters via Diffusion Times (SSIFT)

Vanderbilt researchers have developed a novel MRI-based method for fast, robust, and accurate imaging of biological tissue by selecting a specific cell size range (such as tumors) without the need for a contrast agent. One exciting application of this method is imaging brain metastases (BM) that are difficult to differentiate from other brain abnormalities such as radionecrosis when using existing approaches.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Junzhong Xu
Medical Imaging

High Performance Nanofiltration Membranes

A research team led by Professor Shihong Lin at Vanderbilt University has developed a novel method to enhance the performance of nanofiltration (NF) membrane. This new approach has three major benefits:1) uses a class of additives that is low-cost and widely available2) is readily compatible with existing manufacturing infrastructure3) achieves ultra-sharp selectivity or enhanced perm-selectivity


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Shihong Lin

Method for Non-Invasive Complete Vascular Occlusion Using MR Guided Focused Ultrasound Surgery

Researchers have developed a non-invasive method for creating vascular occlusions at specific locations within a vessel using magnetic resonance guided focused ultrasound (MRgFUS). The speed and efficacy of this approach is better than traditional vascular occlusion methods, and the method can be further enhanced through the use of phase shift nano-droplets. The approach is even applicable to large vessels that can be extremely challenging to ablate due to the heat sink effect. Ultimately, the ability to occlude selected vasculature could aid in the treatment of vascular malformations, hemorrhage control, and tumor devascularization.


Licensing Contact

Chris Harris

615.343.4433
Medical Devices

System for Transporting, Sorting, and Assembling Nanoscale Objects

Vanderbilt researchers have developed a new system for transporting and sorting nanoscale and mesoscale particles and biomolecules. The system is able to achieve size-based sorting and captures/arranges the particles within a few seconds, which is significantly faster than the existing method of diffusion-based transport.


Licensing Contact

Philip Swaney

615.322.1067