Browse Technologies

Displaying 81 - 90 of 267


Small Molecule mGlu5 NAMs For The Treatment of Depressive Disorders or Parkinson's Disease

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Tom Utley

615.343.3852

Multisubstrate Inhibitors of Histone Acetylation Increase the Cytotoxicity of Chemotherapeutic Agents

Inhibitors of histone acetylation may constitute a novel class of potent therapy sensitizers applicable to a broad range of conventional cancer treatments.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Oncology

The Adventures of Jasper Woodbury: Videodisc-Based Adventures That Focus on Mathematical Problem Finding and Problem Solving Designed for Students in Grades 5 and Up

The Adventures of Jasper Woodbury™ consists of 12 videodisc-based adventures that focus on mathematical problem finding and problem solving. In particular, each adventure provides multiple opportunities for problem solving, reasoning, communication and making connections to other areas such as science, social studies, literature and history. Jasper adventures are designed for students in grades 5 and up. Each videodisc contains a short (approximately 17 minute) video adventure that ends in a complex challenge. The adventures are designed like good detective novels where all the data necessary to solve the adventure (plus additional data that are not relevant to the solution) are embedded in the story. Jasper adventures also contain ""embedded teaching"" episodes that provide models of particular approaches to solving problems.


Licensing Contact

Janis Elsner

615.343.2430
Education

Small Molecule mGlu3 NAMs as Therapeutics for CNS Disorders

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics

mGlu3 NAMs as Therapeutics for Chemoresistant Tumors

Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).


Licensing Contact

Tom Utley

615.343.3852
Therapeutics

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

A Device and Method for Vascular or Nerve Separation and Bridging

Vanderbilt researchers have designed a device and method for separating an arteriole that passes over a vein and restricts the passage of blood flow in the eye, which if uncorrected can lead to hemorrhage and vision loss. The device surgically separates the two vessels and then places a stent or bridge between them to alleviate compression. Visualization during the procedure is provided with optical coherence tomography (OCT), and the surgical tool can be either hand-held or robotic.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

A Method to Obtain Uniform Radio Frequency Fields in the Body for High Field MRI

Researchers at Vanderbilt have created a new approach to produce uniform radio frequency (RF) fields in the body during high field magnetic resonance imaging (MRI). Existing high field MRI machines create non-uniform RF fields that lead to non-uniform sensitivity in the generated images, also referred to as "hot" and "cold" spots. These local variations interfere with the tissue contrast of the images that radiologists depend upon to make accurate diagnoses. By generating uniform RF fields in the body, this technology provides the benefits of high field MRI without the non-uniform RF fields.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Ashok Choudhury

615.322.2503