Browse Technologies

Displaying 81 - 90 of 238


System for Transporting, Sorting, and Assembling Nanoscale Objects

Vanderbilt researchers have developed a new system for transporting and sorting nanoscale and mesoscale particles and biomolecules. The system is able to achieve size-based sorting and captures/arranges the particles within a few seconds, which is significantly faster than the existing method of diffusion-based transport.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Justus Ndukaife

Upper Extremity Assistance Device

An assistive device for individuals with upper extremity neuromuscular deficit has been developed by researchers at Vanderbilt. This device is specifically designed for patients having hemiplegia following stroke, incomplete spinal cord injury, multiple sclerosis, and other disabilities and conditions, who may have severe muscle weakness or inability to fully control an upper limb. In order to facilitate use of the upper limb, the patient can wear the device as a substitute for or a supplement to the patient's volitional movement.


Licensing Contact

Ashok Choudhury

615.322.2503

Cleopatra -- A Wearable Surgical Camera

Vanderbilt researchers have developed a wearable surgical camera designed for use over the top of a surgical gown. The system, nicknamed Cleopatra, is designed specifically for the OR, maintains a consistent view of the operative field during a procedure, and is capable of supporting video, audio, lighting, and other technology in the immediate vicinity of the surgical field.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices
Surgery

Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Ashok Choudhury

615.322.2503

Cooling-Triggered Self-Destructing Electronics

Vanderbilt University researchers have developed self-destructing electrical conductors that dissolve and vanish below a certain critical temperature, which is achieved either by actively cooling the circuit or by removing a heat source.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Leon Bellan, Xin Zhang

Rotary Planar Peristaltic Micropump (RPPM) and Rotary Planar Valve (RPV) for Microfluidic Systems

A Vanderbilt University research team led by Professor John Wikswo has developed low-cost, small-volume, metering peristaltic micropumps and microvalves. These pumps and valves can be used either as stand-alone devices incorporated into microfluidic subsystems, or as readily customized components for research or miniaturized point-of-care instruments, Lab-on-a-Chip devices, and disposable fluid delivery cartridges.


Licensing Contact

Ashok Choudhury

615.322.2503

Continuum Robots with Sensing Capabilities to Adapt Structure

Vanderbilt researchers have developed a continuum robot with the ability to adapt both its length and diameter of its segments. This could help expand the usability and effectiveness of continuum robots.


Licensing Contact

Masood Machingal

615.343.3548
Robotics

Easily Maneuverable Robotic Control System for a Magnetically Actuated Flexible Endoscope

Vanderbilt researchers have developed a system that allows for active control of the motion of a magnetically actuated flexible endoscope. The system decreases pain during endoscopic procedures and increases clinician control over the endoscope.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Philip Swaney

615.322.1067

Low-Cost Non-Invasive Handheld Ultrasound Device for Measuring Tissue Stiffness

Vanderbilt University researchers have developed a hand-held device to quantitatively measure tissue stiffness for medical monitoring. This device is non-invasive, low-cost, and can be used at the point of care.


Licensing Contact

Masood Machingal

615.343.3548