Browse Technologies

Displaying 81 - 90 of 240


One-Step Hydrosilylation for Click Chemistry Compatible Surfaces

Vanderbilt inventors have developed a one-step hydrosilylation synthesis of azide surfaces for the preparation of click chemistry compatible substrates. In this process, an organic azide is formed in a single step on a hydrogen-terminated silicon support, yielding a surface that is ready to undergo click reactions as desired. Simple, efficient, and versatile, click chemistry is widely used and is particularly useful for biosensing applications. A click reaction can be utilized to attach a molecular or biological probe for point-of-care diagnostics and chemical screening.


Licensing Contact

Ashok Choudhury

615.322.2503

Biophotonic imaging system for tumor margin detection and islet cell beneficiation

Vanderbilt researchers have developed an autofluorescence-based system for intraoperative margin assessment of pancreatic cancers. Also under development is the application of the same underlying technology to optimize pancreatic islet cell visualization and extraction to improve the efficiency of islet cell transplantation.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Improved Biomanufacturing Using Biological Clock Control for High Yield/Low Cost Bioproduct

A team of researchers at Vanderbilt University has developed a method of manipulating the circadian clock of cyanobacteria. This biological manipulation is used to increase gene expression in target genes that produce biofuel and high-value bioproducts, such as pharmaceuticals and cosmetics from precursor-expressing genes. Altering the circadian rhythm in the bacteria provides an improved approach to bioproduct development on a large scale using sunlight as a zero--cost energy solution.


Licensing Contact

Masood Machingal

615.343.3548

Cooling-Responsive Gel for Local Drug Delivery Applications

Vanderbilt researchers have created a cooling-responsive gel implant that meets the need for non-invasive local drug delivery and is simple to activate, requiring only an ice pack for some applications, eliminating complex clinical equipment. This implant is ideal for alternative pain management or delivery of cancer therapeutics.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Leon Bellan
Therapeutics

Miniature Magnetorheological Brake Technology

A team of Vanderbilt engineers have developed a miniature magnetorheological (MR) brake with a combination of high braking torque and a fast response time. With potential applicability over a wide spectrum of applications, the device was initially developed with robotic and haptic applications in mind.


Licensing Contact

Ashok Choudhury

615.322.2503

Bioresorbable RF Coils for Post-Surgical Monitoring by MRI

Vanderbilt researchers have developed bioresorbable RF coils to improve the signal-to-noise ratio (SNR) for use in post-surgical monitoring.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Mark Does, John Rogers

Innovative Mobile App that Facilitates Self-Management in Diabetes

Vanderbilt researchers have developed the MyDay mobile app (iOS/Android) designed to collect, integrate, and provide feedback on a wide range of individual data relevant for diabetes self-management which allows flexible creation of data collection content, format, and timing.


Licensing Contact

Masood Machingal

615.343.3548

Nanoporous Atomically Thin Graphene Membranes for Desalination & Nanofiltration

Vanderbilt researchers have developed an atomically thin membrane with extremely high selectivity and permeability for use in desalination and nanofiltration applications.


Licensing Contact

Philip Swaney

615.322.1067

Nanoporous Atomically Thin Breathable Personal Protective Membranes

Vanderbilt researchers have developed an atomically thin membrane with extremely high selectivity and permeability for use in personal protective equipment.


Licensing Contact

Philip Swaney

615.322.1067

Ultrasound Device for Underwater High Resolution Imaging in Turbid Water

A team of Vanderbilt researchers has developed a novel system for producing 3D, real-time, high-resolution visualization within arms reach of a diver. The system uses a custom ultrasound array and mirror system in conjunction with software and algorithms to overcome the limitations of existing systems, enabling the diver to see through turbid water in real-time.


Licensing Contact

Philip Swaney

615.322.1067