Browse Technologies

Displaying 71 - 80 of 218


No-touch Breast Implant Placement Device

Vanderbilt researchers have developed a breast implant device that minimizes potential contaminants during surgery by requiring no contact between the surgeon and the implant during insertion.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices
Surgery

Surgical Guide for Intraoral Vertical Ramus Osteotomy

Vanderbilt researchers have developed a novel surgical guide for intraoral vertical ramus osteotomy (IVRO) that helps to preserve the proximal segment medial pterygoid attachment and avoid injury to the inferior alveolar neurovascular bundle during the procedure.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

New Optical Tweezers for Rapid Control of Nanoscale Objects

Vanderbilt researchers have developed a novel technology for trapping and dynamically manipulating nanoscale objects. Control over miniature objects like proteins can aid in applications such as biological sensing, single molecule analysis, and size-based sorting of nanoscale objects.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Justus Ndukaife

Articulating Laryngeal Mask Airway

Vanderbilt University researchers have developed a new laryngeal mask airway (LMA) that utilizes a unique, articulated tip and is designed to navigate a patient's oropharynx more easily and safely. The device is manually actuated by the health care provider during insertion, helping the novel LMA better conform to the anatomy and form a secure airway path for use during clinical procedures.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Dustin Dockins
Medical Devices

Enhanced Optical Imaging for the Treatment of Retinal Disease

Vanderbilt researchers have developed a system for enhancing the imaging capabilities of optical coherence tomography (OCT), a tool commonly used to monitor and treat patients with retinal disease. The image resolution of OCT, however, is intrinsically limited. Ideally, a contrast agent could be used to highlight specific parts of the retina within the image, but dye alone is largely ineffective because of the way OCT generates the image. Photothermal heating solves this problem by creating local zones of tissue expansion which can be distinctly detected by OCT. Photothermal-OCT is safe, effective, and enhances the imaging power of a tool widely used by opticians.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Systems and Methods for Non-destructive Evaluation of Optical Material Properties and Surfaces

A team of Vanderbilt researchers has developed a novel system and method for non-destructive characterization of compound lenses. The approach uses optical coherence tomography and reflectance confocal microscopy to fully characterize lens geometry and glass materials, enabling accurate modeling of compound lenses.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Method and System for Automating Oxygen Monitoring and Dosing in Real Time for Patient on Oxygen Therapy

Vanderbilt researcher, Lisa Lancaster, MD, has developed a novel device to monitor the flow as well as adjust actively the levels of oxygen that pass to a patient suffering from Idiopathic Pulmonary Fibrosis or other causes of hypoxic lung disease. Standing out of the pack, this device ensures that patients exerting themselves are given enough oxygen while actively reducing the dosage, to prevent further damage, when the same patient is resting.


Licensing Contact

Masood Machingal

615.343.3548

Inventors

Lisa Lancaster
Medical Devices
Pulmonary/Respiratory

An Ergothioneine PET Radioligand for Imaging Oxidative Stress in Alzheimer's Disease

Vanderbilt researchers lead by Professor Wellington Pham, PhD, have developed a novel ergothioneine (ERGO) PET radioligand for imaging oxidative stress in Alzheimer's disease.


Licensing Contact

Masood Machingal

615.343.3548
Therapeutics
Neuroscience/Neurology

Cell-Permeable Socs Proteins That Inhibit Cytokine-Induced Signaling

Scientists at Vanderbilt have developed a unique polypeptide using cell-penetrating SOCS polypeptides or SOCS sequences designed to inhibits cytokine signaling and thus prevent or treat inflammation or an inflammatory related disease such as diabetes. This strategy has been validated in NOD mice models for either induced or naturally occurring diabetes and have been efficacious.


Licensing Contact

Clarissa Muere

615.343.2430
Therapeutics

Mechanism for Efficient Stiffness Modulation of Springs

Vanderbilt researchers have developed a novel variable stiffness spring mechanism that affords low energy cost stiffness adaptation. Essentially, the energy cost of changing the stiffness of the spring is rendered independent of the energy stored in the spring.


Licensing Contact

Ashok Choudhury

615.322.2503
Robotics