Browse Technologies

Displaying 71 - 80 of 238


mGlu3 NAMs as Therapeutics for Chemoresistant Tumors

Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).


Licensing Contact

Tom Utley

615.343.3852
Therapeutics

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

Miniature Magnetorheological Brake Technology

A team of Vanderbilt engineers have developed a miniature magnetorheological (MR) brake with a combination of high braking torque and a fast response time. With potential applicability over a wide spectrum of applications, the device was initially developed with robotic and haptic applications in mind.


Licensing Contact

Ashok Choudhury

615.322.2503

High-Performance Anti-Fouling, Anti-Wetting Membrane for Wastewater Distillation

Vanderbilt researchers have developed a novel membrane for membrane distillation that is resistant to both fouling and wetting and can be used to treat highly contaminated saline wastewater.


Licensing Contact

Philip Swaney

615.322.1067

Systems and Methods for Non-destructive Evaluation of Optical Material Properties and Surfaces

A team of Vanderbilt researchers has developed a novel system and method for non-destructive characterization of compound lenses. The approach uses optical coherence tomography and reflectance confocal microscopy to fully characterize lens geometry and glass materials, enabling accurate modeling of compound lenses.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Systems and Methods for Reduced End-face Reflection Back-Coupling in Fiber-Optics

Vanderbilt researchers have developed a technology for suppressing end-face reflections in most fiber optic components, thereby reducing a significant source of noise in fiber-optic systems. The solution employs a fused-spliced length of angle-polished no-core fiber in order to angle reflections outside the acceptance numerical aperture of the fiber and spatially offsetting any reflections to minimize back-coupling. The result is a compact solution that significant decreases noise without significantly altering the specifications of the fiber-optic component.


Licensing Contact

Philip Swaney

615.322.1067

Ultrasound Device for Underwater High Resolution Imaging in Turbid Water

A team of Vanderbilt researchers has developed a novel system for producing 3D, real-time, high-resolution visualization within arms reach of a diver. The system uses a custom ultrasound array and mirror system in conjunction with software and algorithms to overcome the limitations of existing systems, enabling the diver to see through turbid water in real-time.


Licensing Contact

Philip Swaney

615.322.1067

Non-invasive Fiducial Marker for Imaging and Radiation Delivery in the Eye

A team of Vanderbilt researchers has developed a novel fiducial marker for use during radiosurgery of the eye. The fiducial is a non-invasive, comfortable method for performing registration of preoperative medical images and the radiotherapy target during therapy. The device aims to remove the need for existing invasive registration procedures, while still providing accurate localization to the clinician.


Licensing Contact

Philip Swaney

615.322.1067

Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Philip Swaney

615.322.1067

System for Transporting, Sorting, and Assembling Nanoscale Objects

Vanderbilt researchers have developed a new system for transporting and sorting nanoscale and mesoscale particles and biomolecules. The system is able to achieve size-based sorting and captures/arranges the particles within a few seconds, which is significantly faster than the existing method of diffusion-based transport.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Justus Ndukaife