Browse Technologies

Displaying 61 - 70 of 207


Small Molecule mGlu3 NAMs as Therapeutics for CNS Disorders

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics

mGlu3 NAMs as Therapeutics for Chemoresistant Tumors

Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).


Licensing Contact

Tom Utley

615.343.3852
Therapeutics

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

Microneedle Device to Detect Early Lyme Disease

As the geographical territory of ticks continues to expand, new diagnostics for quickly detecting Lyme disease are becoming increasingly necessary. Vanderbilt researchers have developed a simple and inexpensive microneedle technology for collecting bacteria from a tick bite site, allowing rapid detection by PCR and treatment options weeks before the current standard.


Licensing Contact

Seema Sinha

615.343.2430

Inventors

Emily Kight
Diagnostics
Infectious Disease

Protein that protects probiotics from desiccation, leading to improved gut colonization

Probiotic supplements undergo significant water loss before consumption, killing many of their bacteria and rendering them less effective. Vanderbilt researchers have discovered a protein that protects against damage caused by desiccation and shown that this molecular shield can be added to probiotics to help them survive and colonize the gut. This platform technology can be broadly incorporated into new or existing supplements to make them more efficacious and even improve costs and distribution.


Licensing Contact

Karen Rufus

615.322.4295

Inventors

Eric Skaar, Erin Green
Therapeutics

Targeted photodynamic therapy for S. aureus infections

Vanderbilt researchers have developed a combination photodynamic therapy (PDT) for targeting MRSA infections in skin that is not only effective but also HIGHLY SPECIFIC and LESS SUSCEPTIBLE TO RESISTANCE, adding a much needed therapy to our quickly depleting arsenal against this pathogen.


Licensing Contact

Cameron Sargent

615.343.2430

Inventors

Eric Skaar
Therapeutics

Early Detection of Implant Loosening

Vanderbilt University researchers have developed a new technique for identifying implantloosening. The technique utilizes the analysis of synovial fluid as an early indicator of potential loosening of orthopedic implants.


Licensing Contact

Ashok Choudhury

615.322.2503

Nanoporous Atomically Thin Breathable Personal Protective Membranes

Vanderbilt researchers have developed an atomically thin membrane with extremely high selectivity and permeability for use in personal protective equipment.


Licensing Contact

Philip Swaney

615.322.1067

Nanoporous Atomically Thin Graphene Membranes for Desalination & Nanofiltration

Vanderbilt researchers have developed an atomically thin membrane with extremely high selectivity and permeability for use in desalination and nanofiltration applications.


Licensing Contact

Philip Swaney

615.322.1067

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Ashok Choudhury

615.322.2503