Browse Technologies

Displaying 61 - 70 of 252


Portfolio of Continuum Robotic Systems, Algorithms, and Software Technologies from the Robotics Lab of Professor Nabil Simaan

Professor Simaan and his lab have years of experiencing working collaboratively with commercial entities of various sizes. His research is focused on advanced robotics, mechanism design, control, and telemanipulation for medical applications. His projects have led the way in advancing several robotics technologies for medical applications including high dexterity, snake-like robots for surgery, steerable electrode arrays for cochlear implant surgery, robotics for single port access surgery, and natural orifice surgery.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices
Genitourinary

Portfolio of Image-Guidance and Organ Localization Technologies from the Lab of Professor Michael Miga

The focus of Dr. Miga's laboratory is on the development of new paradigms in detection, diagnosis, characterization, and treatment of disease through the integration of computational models into research and clinical practice.


Licensing Contact

Philip Swaney

615.322.1067

PosiSeat(TM): Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.


Licensing Contact

Taylor Jordan

615.936.7505

Precision Pneumatic Robot for MRI-Guided Neurosurgery

At Vanderbilt University, a robotic steering mechanism for MRI-guided neurosurgical ablation has been developed. The small robot has submilimeter precision and is fully MRI compatible. It aims to replace current surgical practices with minimally invasive procedures in order to enhance the treatment of cancer and numerous neurological disorders such as epilepsy.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

Small Molecule Mediated Transcriptional Induction of E-Cadherin and Inhibition of Epithelial-to-mesenchymal Transition


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Oncology

Synthetic Beam Chopper

A new system of signal modulation and lock-in amplification has been developed at Vanderbilt University. The invention serves as a low cost alternative to current mechanical beam choppers and lock-in amplifiers, with lower limits of detection, decreased need for mechanical precision, and improved accuracy.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Jesse Shaver
Energy

System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.


Licensing Contact

Taylor Jordan

615.936.7505

Systems-Biology Infrastructure to Identify Drug Repurposing Opportunities as Antiviral & Anticancer Therapeutics

Vanderbilt researchers have developed an in-silico screening method to reveal new indications for existing drugs with known protein targets using a novel infrastructure. The infrastructure integrates multiple factors across system-biology models to create a drug discovery pipeline.


Licensing Contact

Janis Elsner

615.343.2430

Targeting microRNAs as a Treatment for Vascular Disease

Vanderbilt researchers have identified a highly expressed microRNA crucial in angiotensin induced hypertension; and developed a therapeutic strategy that focuses on local or systemic administration of antisense microRNA to inhibit microRNA expression as treatment for vascular diseases. Promising data in animal models reveals that the inhibition of such microRNA not only prevents fibrosis but also reverses previously established aortic stiffening.


Licensing Contact

Jody Hankins

615.322.5907