Browse Technologies

Displaying 61 - 70 of 178


Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Masood Machingal

615.343.3548

Dual Interlocked Logic (DIL) Circuit

Vanderbilt researchers have developed a novel combinatorial logic circuit that prevents the propagation of signal glitches such as those caused by radiation-induced transients. The interlocked-feedback circuit accomplishes this without the loss of any speed. The circuit is designed for robustness in both combinatorial and sequential logic applications.


Licensing Contact

Philip Swaney

615.322.1067

Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Masood Machingal

615.343.3548

Modular and Stackable Microfluidic Devices

Vanderbilt researchers have invented a modular microfluidic bioreactor that can be layered and stacked to create complex organ-on-chip systems that mimic the behavior of human organ systems such as the neurovascular unit. This modular device can also be assembled from separate, functioning biolayers, and at the end of a study disassembled for examination of individual cellular components.


Licensing Contact

Masood Machingal

615.343.3548
Microfluidics

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Masood Machingal

615.343.3548

Coordinated Control for Arm Prosthesis

Researchers at Vanderbilt have created a novel control of an (myoelectric) arm prosthesis consisting of at least an elbow joint with the possibility of an additional single or multi-axis wrist joint.


Licensing Contact

Taylor Jordan

615.936.7505

Upper Extremity Assistance Device

An assistive device for individuals with upper extremity neuromuscular deficit has been developed by researchers at Vanderbilt. This device is specifically designed for patients having hemiplegia following stroke, incomplete spinal cord injury, multiple sclerosis, and other disabilities and conditions, who may have severe muscle weakness or inability to fully control an upper limb. In order to facilitate use of the upper limb, the patient can wear the device as a substitute for or a supplement to the patient's volitional movement.


Licensing Contact

Taylor Jordan

615.936.7505

Rotary Planar Peristaltic Micropump (RPPM) and Rotary Planar Valve (RPV) for Microfluidic Systems

A Vanderbilt University research team led by Professor John Wikswo has developed low-cost, small-volume, metering peristaltic micropumps and microvalves. These pumps and valves can be used either as stand-alone devices incorporated into microfluidic subsystems, or as readily customized components for research or miniaturized point-of-care instruments, Lab-on-a-Chip devices, and disposable fluid delivery cartridges.


Licensing Contact

Masood Machingal

615.343.3548

Pulsed Infrared Light for the Inhibition of Central Nervous System Neurons

Vanderbilt researchers have developed a novel method for contactless simulation of the central nervous system. This technique involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system. While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Tentacle-Like Robots to Access Tight Spaces in Manufacturing and Medical Applications

Vanderbilt researchers have developed a novel method for enabling tentacle-like robots to reach into tight spaces in manufacturing or medical applications. This is useful for industrial inspection tasks, assembly of products like airplane wings with complex geometry, or making medical endoscopes reach places in the body they cannot reach today. The new invention involves routing actuation wires along a flexible arm through curved paths along the robot


Licensing Contact

Chris Harris

615.343.4433
Medical Devices