Browse Technologies

Displaying 51 - 60 of 178


System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.


Licensing Contact

Taylor Jordan

615.936.7505

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan

615.936.7505

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

One-Step Hydrosilylation for Click Chemistry Compatible Surfaces

Vanderbilt inventors have developed a one-step hydrosilylation synthesis of azide surfaces for the preparation of click chemistry compatible substrates. In this process, an organic azide is formed in a single step on a hydrogen-terminated silicon support, yielding a surface that is ready to undergo click reactions as desired. Simple, efficient, and versatile, click chemistry is widely used and is particularly useful for biosensing applications. A click reaction can be utilized to attach a molecular or biological probe for point-of-care diagnostics and chemical screening.


Licensing Contact

Taylor Jordan

615.936.7505

Mechanism for Efficient Stiffness Modulation of Springs

Vanderbilt researchers have developed a novel variable stiffness spring mechanism that affords low energy cost stiffness adaptation. Essentially, the energy cost of changing the stiffness of the spring is rendered independent of the energy stored in the spring.


Licensing Contact

Taylor Jordan

615.936.7505
Robotics

Miniature Magnetorheological Brake Technology

A team of Vanderbilt engineers have developed a miniature magnetorheological (MR) brake with a combination of high braking torque and a fast response time. With potential applicability over a wide spectrum of applications, the device was initially developed with robotic and haptic applications in mind.


Licensing Contact

Chris Harris

615.343.4433

Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Chris Harris

615.343.4433

Low-Frequency Strain Energy Harvester

Vanderbilt researchers have developed a novel energy-harvesting device capable of efficient electrochemical strain energy harvesting at frequencies as low as 0.01 Hz. The device enables the harvesting of energy produced from low frequencies associated with human motion such as walking and sitting.


Licensing Contact

Philip Swaney

615.322.1067

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices