Browse Technologies

Displaying 51 - 60 of 238


New Drug for Blood Clot: FXII Inhibitors to Treat Thrombosis

Thrombosis is the formation of a blood clot inside a blood vessel, which may cause reduced blood flow to a tissue, or even tissue death. Thrombosis, inflammation, and infections are responsible for >70% of all human mortality. Thrombosis is also the major factor for heart disease and stroke. 500,000 die from thrombosis every year in Europe. Inhibitory treatment of these conditions may also improve the outcomes of several non-fatal diseases. Researchers from Vanderbilt University and Oregon Health & Science University have jointly discovered new monoclonal antibodies that potently inhibit the blood coagulation protein factor XII (FXII), a critical player in the pathway, and anticoagulate blood. This invention provides foundation for commercial development of anti-thrombotic drugs based on new molecular entities.


Licensing Contact

Janis Elsner

615.343.2430
Therapeutics

New Molecules Clear Chronic Infections by Disrupting Bacterial Energy Production Pathways

New compounds developed at Vanderbilt demonstrate a unique mechanism of broad spectrum activity to stymy antibacterial resistance. The compounds are particularly useful in chronic infections where long term antibiotic therapy fails, because it specifically kills "small colony variants" -- the bacteria that have developed resistance mechanisms. These compounds show promise in treating Methicillin-resistant S. aureus (MRSA), Bacillus anthracis (anthrax), and in overcoming difficult-to-treat infections in bone in cystic fibrosis patients. These compounds could be combined with new (and old) antimicrobial drugs to outwit resistant bacterial infections.


Licensing Contact

Karen Rufus

615.322.4295
Therapeutics

NMR Signal Amplification by Reversible Exchange (SABRE) in Water

Vanderbilt researchers have developed a method to perform the Parahydrogen Induced Polarization (PHIP) based method of Signal Amplification by Reversible Exchange (SABRE) in aqueous media. This allows the resulting hyperpolarized molecules to be used for in vivo applications.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Novel anti-platelet therapy for treatment of thrombosis, cardiovascular disease, and cerebrovascular injury

One of the leading causes of deaths in developed countries is related to thromboembolism. PAR-4 (protease activated receptor-4) is one of two receptors on the human platelet that respond to thrombin, the central enzyme of coagulation.  Researchers here at Vanderbilt University have developed novel antagonists of PAR-4 that could be beneficial for patients allowing for normal hemostasis during treatment for thrombotic events.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Cardiovascular

On Chip Polarimetry for HTS

Using microfluidic technology developed by the Bornhop Lab at Vanderbilt, this invention enables the rapid determination of the optical activity of compounds and solutions. Due to the nature of this invention, it is possible to screen a multitude of samples in a high throughput manner in less time with less material and greater accuracy than the industry standards.


Licensing Contact

Janis Elsner

615.343.2430
Research Tools

Point of Care Rheological Assay for Sickle Cell Disease

Vanderbilt researchers have created a novel technology for the diagnosis and monitoring of disease states using the rheological properties of a blood sample with a lateral flow membrane.


Licensing Contact

Ashok Choudhury

615.322.2503

Polar Liquid Crystals with High Dielectric Anisotropy

Vanderbilt inventors have developed a new class of liquid crystals with high dielectric anisotropy. A new class of liquid crystals containing boron in their structure has been developed with high dielectric anisotropy, which results in low threshold voltages.


Licensing Contact

Philip Swaney

615.322.1067

Precision Pneumatic Robot for MRI-Guided Neurosurgery

At Vanderbilt University, a robotic steering mechanism for MRI-guided neurosurgical ablation has been developed. The small robot has submilimeter precision and is fully MRI compatible. It aims to replace current surgical practices with minimally invasive procedures in order to enhance the treatment of cancer and numerous neurological disorders such as epilepsy.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

Small Molecule Mediated Transcriptional Induction of E-Cadherin and Inhibition of Epithelial-to-mesenchymal Transition


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Oncology

Synthetic Beam Chopper

A new system of signal modulation and lock-in amplification has been developed at Vanderbilt University. The invention serves as a low cost alternative to current mechanical beam choppers and lock-in amplifiers, with lower limits of detection, decreased need for mechanical precision, and improved accuracy.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Jesse Shaver
Energy