Browse Technologies

Displaying 41 - 50 of 240


Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexible Instrument with Pre-curved Elements for Surgical Tools

Vanderbilt researchers have developed a novel system for allowing surgical instruments to navigate around tighter corners and access difficult-to-reach areas in the body. This system uses pre-curved elastic elements added on to the existing instrument. Current surgical instruments are manufactured in a straight-line configuration, which means they must bend in order to reach around obstructions in surgery. By adding pre-curved sections, some of the bending is already accomplished, allowing the instrument to bend around tighter corners.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexure Wrist for Surgical Devices

Vanderbilt researchers have designed a flexible wrist for use with manual or robotic surgical systems.


Licensing Contact

Ashok Choudhury

615.322.2503

Gratings on Porous Silicon Structures for Sensing Applications

In this technology diffraction-based sensors made from porous materials are used for the detection of small molecules. The porous nature of the diffraction gratings that gives rise to an extremely large active sensing area enables a very high level of sensitivity. Specificity is achieved by functionalizing the porous gratings with selective binding species.


Licensing Contact

Yiorgos Kostoulas

615.322.9790

Guide Wire Torque Device for Interventional Medical Procedures

Vanderbilt University researchers have created a torque device that allows surgeons to apply better torque and grip to guide wires used in interventional medical procedures.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Michael Nichols
Medical Devices

Heterogeneous catalysis of NMR Signal Amplification by Reversible Exchange(SABRE)

Vanderbilt researchers have developed heterogeneous catalysis and catalyst for the NMR Signal Amplification by Reversible Exchange (SABRE) hyperpolarization process. Coupled with the researchers' development of a method to perform SABRE in aqueous solutions, this discovery could allow fully biocompatible SABRE hyperpolarization processes in water with catalyst recycling. This would allow the production of pure aqueous contrast agents requiring only parahydrogen as a consumable.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

High Inertance Liquid Piston Engine-Compressor

Inventors at Vanderbilt University have developed a high inertance engine-compressor for use with pneumatically actuated devices, especially those with periods of inactivity between periods of pneumatic use. It utilizes a flexible diaphragm in combination with a liquid piston to achieve high inertance and other operational features such as high efficiency, low noise and low temperature operation.


Licensing Contact

Taylor Jordan

615.936.7505
Energy

Low-cost, Normally Closed Microfluidic Valve

Vanderbilt researchers have developed a normally closed valve that is able to provide selective movement of small fluid quantities in a microfluidic device. The present microfluidic valve can be actuated using a simple rotating drivehead and mechanical support, greatly simplifying the valve design.


Licensing Contact

Ashok Choudhury

615.322.2503

LUMASIL: A Low-Level Light Therapy Device for Treating Diabetic Foot Ulcers

LumaSiL is a low-level light therapy (LLLT) producing device which aims to accelerate wound healing and reduce the incidence of infection in diabetic foot ulcers (DFUs). There is no treatment option using this technology that actively encourages diabetic foot ulcer healing, complements current procedures, and maintains patient compliance. Complications like infection often require the need for surgical intervention such as lower-extremity amputation. Previous studies have shown that exposing wounds to dose-specific levels of light can reduce wound size and promote healing. Incorporated into a standard of care, the total-contact cast, this device transfers LED light from a power source to the wound site in order to introduce an active healing component for diabetic foot ulcers.


Licensing Contact

Masood Machingal

615.343.3548

Marker Enrichment Modeling (MEM) Software for Automated Cell Population Characterization and Identification in Complex Tissue Microenvironments

Marker enrichment modeling (MEM) provides a crucial missing piece for true machine learning analysis of cell identities and phenotypes in complex tissue microenvironments, including human immune disorders and cancer.


Licensing Contact

Masood Machingal

615.343.3548