Browse Technologies

Displaying 21 - 30 of 203


Point of Care Rheological Assay for Sickle Cell Disease

Vanderbilt researchers have created a novel technology for the diagnosis and monitoring of disease states using the rheological properties of a blood sample with a lateral flow membrane.


Licensing Contact

Ashok Choudhury

615.322.2503

Organ-on-a-Chip System

Vanderbilt researchers have developed a group of microfluidic organ-on-chip devices that include perfusion controllers, microclinical analyzers, microformulators, and integrated microfluidic measurement chips. Together, these devices can measure and control multiple organ-on-chip systems in order to model the multi-organ physiology of humans.


Licensing Contact

Ashok Choudhury

615.322.2503
Microfluidics

The Adventures of Jasper Woodbury: Videodisc-Based Adventures That Focus on Mathematical Problem Finding and Problem Solving Designed for Students in Grades 5 and Up

The Adventures of Jasper Woodbury™ consists of 12 videodisc-based adventures that focus on mathematical problem finding and problem solving. In particular, each adventure provides multiple opportunities for problem solving, reasoning, communication and making connections to other areas such as science, social studies, literature and history. Jasper adventures are designed for students in grades 5 and up. Each videodisc contains a short (approximately 17 minute) video adventure that ends in a complex challenge. The adventures are designed like good detective novels where all the data necessary to solve the adventure (plus additional data that are not relevant to the solution) are embedded in the story. Jasper adventures also contain ""embedded teaching"" episodes that provide models of particular approaches to solving problems.


Licensing Contact

Peter Rousos

615.343.4465
Education

IntelliCane: Instrumented cane for diagnosis and evaluation of gait behavior in individuals with mobility issues.

This device is designed to assist physical therapists in collection of objective data during gait analysis, to facilitate appropriate assistive gait device prescription, to provide patients and therapists feedback during gait training, and to reduce wrist and shoulder injuries with cane usage.Currently gait characteristics are "measured" in a clinic-based atmosphere. This has two limitations: (i) subjective allocation of "measures" of gait characteristics and (ii) limited data based on trials in the clinic ONLY. What this technology is designed to do is achieve freedom from both of these limitations. The measurements are objective and numerical values (force etc.) and the clinic could provide the cane to the user for obtaining a much more extensive data set including use during normal life activities at home etc.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Higher Accuracy Image-Guidance in Surgery

Vanderbilt engineers have designed and built a device that improves the accuracy of image-guidance systems (IGS) during surgery. The device creates a custom,  non-slip fit over the head and provides a rigid platform for attaching optical tracking markers to the patient, which is a critical component of image-guided neurosurgical procedures. The device can be used to improve the accuracy of IGS in other areas of the anatomy as well.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Michael Miga

Portfolio of Continuum Robotic Systems, Algorithms, and Software Technologies from the Robotics Lab of Professor Nabil Simaan

Professor Simaan and his lab have years of experiencing working collaboratively with commercial entities of various sizes. His research is focused on advanced robotics, mechanism design, control, and telemanipulation for medical applications. His projects have led the way in advancing several robotics technologies for medical applications including high dexterity, snake-like robots for surgery, steerable electrode arrays for cochlear implant surgery, robotics for single port access surgery, and natural orifice surgery.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices
Genitourinary

I-Wire: A Biotension Measurement Device for Tissue Engineering and Pharmacology

Vanderbilt researchers have developed an integrated system ("I-Wire") for the growth of miniature, engineered 3D cardiac or other muscle or connective tissues and their active and passive mechanical characterization. The system utilizes an inverted microscope to measure the strain when the tissue constructs are laterally displaced using a calibrated flexible cantilevered probe.


Licensing Contact

Ashok Choudhury

615.322.2503

Multisubstrate Inhibitors of Histone Acetylation Increase the Cytotoxicity of Chemotherapeutic Agents

Inhibitors of histone acetylation may constitute a novel class of potent therapy sensitizers applicable to a broad range of conventional cancer treatments.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Oncology
Small Molecule
Assays/Screening

PosiSeat(TM): Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.


Licensing Contact

Taylor Jordan

615.936.7505