Browse Technologies

Displaying 131 - 140 of 182


Immortalized Mouse Epididymal Epithelial Cell Lines

These cell lines are useful for studying the regulation of tissue-specific gene expression, and may also be used to identify epididymal-specific transcription factors involved in expression of specific proteins in the epididymis.


Licensing Contact

Cameron Sargent

615.343.2430
Research Tools
Genitourinary
Cell Line

GluN2B Floxed Mice (also called NR2B, glutamate receptor 2B)

Allows for targeted deletion of the GluN2B subunit of NMDA receptors in specific cells or at specific times during development, juvenile, or adult stages. C57BL6/J background


Licensing Contact

Cameron Sargent

615.343.2430

Inventors

Eric Delpire
Research Tools
Neuroscience/Neurology
Animal Model

Endothieal Nitric Oxide Synthase Null Mice (db/db background)

This research targets eNOS.


Licensing Contact

Karen Rufus

615.322.4295

Inventors

Raymond Harris
Research Tools
Cardiovascular
Animal Model

Rabbit-Anti-mouse Pancreatic and Duodenal Homebox Gene-1 Antibody

This research targets Pdx-1.


Licensing Contact

Cameron Sargent

615.343.2430

Inventors

Christopher Wright

3D Junction Bipolar Membranes: More Efficient and Reliable Electrodialysis

Vanderbilt researchers have developed a unique membrane material for more efficient and reliable eletrodialysis. By utilizing a 3D junction structure, the nanofiber bipolar membrane does not degrade or delaminate during high current passage unlike commercial 2D membranes that are currently available.


Licensing Contact

Masood Machingal

615.343.3548

Intuitive, Magnetic, Robotic Platform for Minimally-Invasive Surgery

Inventors at Vanderbilt University have developed a robotic platform capable of guaranteeing a degree of agility, mechanical stability, power, reliability, comparable to a standard robotic platform for laparoscopic surgery, but characterized by a much lower invasiveness.


Licensing Contact

Masood Machingal

615.343.3548
Gastrointestinal

'Coffee Ring' Diagnostic for Point-of-Care Biomarker Detection

Bright minds at Vanderbilt University have unveiled a breakthrough technology that could bring sophisticated biomarker diagnostics to the developing world. The point-of-care diagnostic is designed to be used in the field; no specialized equipment, expertise, or white lab coats are required. The diagnostic is based upon the ingenous observation that evaporating liquid droplets leave behind a characteristic ring pattern, which may be familiar to our readers in the form of a coffee-ring stain.


Licensing Contact

Karen Rufus

615.322.4295
Diagnostics

Antimicrobial Compounds and Methods of Use Thereof

Vanderbilt researchers, led by Eric Skaar, Ph.D., have identified novel compounds that are antimicrobial. These compounds represent a first in class as they target a new bacterial pathway that has never been targeted as an antimicrobial strategy.


Licensing Contact

Karen Rufus

615.322.4295
Therapeutics

Catheter Having Temperature Controlled Anchor and Related Methods

Heart valve disease is the 3rd most prevalent source of cardiovascular disease, leading to approximately 20,000 deaths per year in the U.S. alone. Moreover, there are an estimated 41,000 mitral valve procedures performed in the U.S. each year. The only effective, long-term treatment for mitral valve disease is open-chest valve replacement surgery, which is highly undesirable for elderly patients. Thus, there is a pressing need to develop novel percutaneous strategies for treatment that will reduce the number of open-chest surgeries. David Merryman and colleagues have developed a new, combined catheter that uses cryo temperatures to adhere to moving mitral valve leaflets and radiofrequency ablation to alter the compliance of the leaflet tissue to prevent prolapse and regurgitation.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices

PANORAMIC: Precession and Nutation for Observing Rotation at Multiple Intervals about the Carrier

Methods of hyperpolarization based on parahydrogen have been expanding recently from the early applications in hydrogenation chemistry to biomedical imaging where they are expected to yield similar information as the competing technology, dynamic nuclear polarization, (DNP). These hyperpolarization experiments have already enabled the measurement of metabolism in vivo at temporal resolutions of seconds. When infused into organisms harboring tumor cells, molecules such as pyruvate and lactate have been shown to be sufficiently long-lived to infiltrate cellular metabolic cycles and be converted at different rates in cancer versus normal tissue. DNP has been used most frequently in these early studies, owing to commercial availability and the flexibility to polarize small molecules such as pyruvate and lactate. Techniques based on chemical addition or exchange of parahydrogen have also shown promise for generating metabolic contrast in vivo at similar levels of signal enhancement and at lower costs.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Kevin Waddell
Medical Imaging