Browse Technologies

Displaying 11 - 20 of 261


Synthetic Beam Chopper

A new system of signal modulation and lock-in amplification has been developed at Vanderbilt University. The invention serves as a low cost alternative to current mechanical beam choppers and lock-in amplifiers, with lower limits of detection, decreased need for mechanical precision, and improved accuracy.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Jesse Shaver
Energy

Flexure Wrist for Surgical Devices

Vanderbilt researchers have designed a flexible wrist for use with manual or robotic surgical systems.


Licensing Contact

Ashok Choudhury

615.322.2503

Continuum Robots with Equilibrium Modulation (CREM)

The A.R.M.A. Laboratory of Vanderbilt University has developed a novel continuum robot design enabling multi-scale motion at the macro and micro scale. The unique design allows miniaturization with minimal added cost thereby potentially giving rise to a new generation of surgical robots capable of both macro-motion for surgical intervention and micro-scale motion for cellular-level imaging or intervention. Micro-motion is achieved through a unique method for altering the equilibrium pose of the robot via material re-distribution throughout the length of the robot. This process ushers in a new class of surgical robotics termed continuum robots with equilibrium modulation (CREM).


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Portfolio of Continuum Robotic Systems, Algorithms, and Software Technologies from the Robotics Lab of Professor Nabil Simaan

Professor Simaan and his lab have years of experiencing working collaboratively with commercial entities of various sizes. His research is focused on advanced robotics, mechanism design, control, and telemanipulation for medical applications. His projects have led the way in advancing several robotics technologies for medical applications including high dexterity, snake-like robots for surgery, steerable electrode arrays for cochlear implant surgery, robotics for single port access surgery, and natural orifice surgery.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices
Genitourinary

New Insect Repellants Disrupt Olfactory Cues: A Strategy for Pest Protection

A multinational research team, led by Dr. L. J. Zwiebel of Vanderbilt University, has identified new compounds with potential as insect repellents. These compounds work by capitalizing on knowledge of how insect odorant receptors detect and respond to scents. Medicinal chemistry efforts have yielded a number of novel compounds that could short-circuit the insect olfactory system, essentially by over-stimulation, to effectively mask attractive odors. These compounds could be used to repel nuisance and disease-carrying insects away from humans and animals, as well as repel agricultural pests from crops or food storage facilities. Vanderbilt University is seeking commercial partners to develop the technology for agricultural uses.


Licensing Contact

Janis Elsner

615.343.2430

Smart Battery Controller with Fault Tolerance

Vanderbilt researchers have developed a smart controller that intelligently reconfigures a battery bank to both extend the overall discharge time and provide fault tolerance.


Licensing Contact

Philip Swaney

615.322.1067

Polar Liquid Crystals with High Dielectric Anisotropy

Vanderbilt inventors have developed a new class of liquid crystals with high dielectric anisotropy. A new class of liquid crystals containing boron in their structure has been developed with high dielectric anisotropy, which results in low threshold voltages.


Licensing Contact

Philip Swaney

615.322.1067

Long-Lasting and Self-Sustaining Cell Therapy System

Researchers at Vanderbilt have created a novel drug delivery system using two distinct T-cell populations that interact to promote engraftment and persistence in pre-clinical models, increasing the efficacy of T-cell therapies. Furthermore, "booster" treatments can be administered months after the first dose to produce an expansion of antigen specific T cells. These advantages result in longer-term therapeutic efficacy and could reduce the number of treatments required. This system also represents a viable self-renewing platform for the delivery of biologic drugs in patients who would otherwise require frequent administration.


Licensing Contact

Clarissa Muere

615.343.2430

New Clostridium Difficile Recombinant Toxin for Safe Vaccine Development

A structural biology approach has identified a conserved region common to multiple Clostridium toxins. Specific mutations of the protein sequence in this region prevent the toxins from entering into intestinal cells, thereby preventing widespread tissue damage. These recombinant Clostridium toxins may be used to create a multivalent vaccine to protect against multiple species of Clostridium. Furthermore, the recombinant toxin may be used as a safer alternative to the native toxins in vaccine manufacturing. This discovery stems from a collaboration between the laboratories of Dr. Borden Lacy of Vanderbilt University and Dr. Roman Melnyk of the Hospital for Sick Children.


Licensing Contact

Jody Hankins

615.322.5907

Low-cost, Normally Closed Microfluidic Valve

Vanderbilt researchers have developed a normally closed valve that is able to provide selective movement of small fluid quantities in a microfluidic device. The present microfluidic valve can be actuated using a simple rotating drivehead and mechanical support, greatly simplifying the valve design.


Licensing Contact

Ashok Choudhury

615.322.2503