Browse Technologies

Displaying 1 - 6 of 6


Human antibodies targeting a novel flu epitope for use as a universal flu vaccine and treatment

Scientists at Vanderbilt have discovered a new class of human antibodies specific to a novel target for the detection, prevention, and treatment of influenza A viruses (IAV). Using structural characterization, they have identified a novel antigenic site on the hemagglutin (HA) head domain that may be targeted by multiple antibodies simultaneously in a non-competitive manner. They found that administration of these antibodies against an otherwise lethal challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes confers protection when used as prophylaxis or therapy against major IAV subtypes that are pathogenic to humans. These antibodies may prove effective as a universal influenza treatment or in the design of a universal influenza vaccine.


Licensing Contact

Karen Rufus

615.322.4295

Inventors

James Crowe, Seth Zost

Small Molecule mGlu3 NAMs as Therapeutics for CNS Disorders

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Small Molecule

mGlu3 NAMs as Therapeutics for Chemoresistant Tumors

Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Small Molecule

New antibiotics against new targets in multi-drug resistant microorganisms

New everninomicin antibiotics including a potent bifunctional antibiotic natural product targeting two different and distant ribosomal sites are under development and can be readily produced using synthetic biology. Developing resistance to this bidentate antibiotic should be very difficult for pathogenic microorganisms.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Infectious Disease

Targeted photodynamic therapy for S. aureus infections

Vanderbilt researchers have developed a combination photodynamic therapy (PDT) for targeting MRSA infections in skin that is not only effective but also HIGHLY SPECIFIC and LESS SUSCEPTIBLE TO RESISTANCE, adding a much needed therapy to our quickly depleting arsenal against this pathogen.


Licensing Contact

Cameron Sargent

615.322.5907

An Ergothioneine PET Radioligand for Imaging Oxidative Stress in Alzheimer's Disease

Vanderbilt researchers lead by Professor Wellington Pham, PhD, have developed a novel ergothioneine (ERGO) PET radioligand for imaging oxidative stress in Alzheimer's disease.


Licensing Contact

Masood Machingal

615.343.3548
Therapeutics
Neuroscience/Neurology