Browse Technologies

Displaying 1 - 10 of 17


Wolbachia genetic tools for population control of harmful insects

Vanderbilt scientists have engineered transgenic methods for controlling the populations of insects, including infectious disease vectors like mosquitoes and agricultural pests that destroy crops and livestock.


Licensing Contact

Cameron Sargent

615.322.5907

New Insect Repellants Disrupt Olfactory Cues: A Strategy for Pest Protection

A multinational research team, led by Dr. L. J. Zwiebel of Vanderbilt University, has identified new compounds with potential as insect repellents. These compounds work by capitalizing on knowledge of how insect odorant receptors detect and respond to scents. Medicinal chemistry efforts have yielded a number of novel compounds that could short-circuit the insect olfactory system, essentially by over-stimulation, to effectively mask attractive odors. These compounds could be used to repel nuisance and disease-carrying insects away from humans and animals, as well as repel agricultural pests from crops or food storage facilities. Vanderbilt University is seeking commercial partners to develop the technology for agricultural uses.


Licensing Contact

Chris Harris

615.343.4433

Bright White Light Nanocrystals for LEDs

A research team lead by Professor Sandra Rosenthal at Vanderbilt University has developed nanocrystals (~2 nm diameter) that emit white light with very high quantum efficiency. This technology would be a viable cost effective candidate for commercial solid-state lighting applications, such as Light Emitting Diodes (LEDs). These nanocrystals were originally discovered by the same group in 2005; a recent breakthrough in post-treatment results in improving fluorescent quantum yield up to ~ 45%.


Licensing Contact

Chris Harris

615.343.4433

Gratings on Porous Silicon Structures for Sensing Applications

In this technology diffraction-based sensors made from porous materials are used for the detection of small molecules. The porous nature of the diffraction gratings that gives rise to an extremely large active sensing area enables a very high level of sensitivity. Specificity is achieved by functionalizing the porous gratings with selective binding species.


Licensing Contact

Yiorgos Kostoulas

615.322.9790

One-Step Hydrosilylation for Click Chemistry Compatible Surfaces

Vanderbilt inventors have developed a one-step hydrosilylation synthesis of azide surfaces for the preparation of click chemistry compatible substrates. In this process, an organic azide is formed in a single step on a hydrogen-terminated silicon support, yielding a surface that is ready to undergo click reactions as desired. Simple, efficient, and versatile, click chemistry is widely used and is particularly useful for biosensing applications. A click reaction can be utilized to attach a molecular or biological probe for point-of-care diagnostics and chemical screening.


Licensing Contact

Ashok Choudhury

615.322.2503

Surface Active Ionic Liquid with Activity in Aqueous and Non-aqueous Media

Surface active ionic liquids (SAILs) exhibit extraordinary properties both as solvents and superior surfactants. However, existing SAILs have limitations that prevent their full potential from being realized. To address this, researchers at Vanderbilt have synthesized a promising chiral SAIL that can be used as a detergent or stabilizing agent at all kinds of interfaces and is made from an inexpensive and biodegradable starting material.


Licensing Contact

Masood Machingal

615.343.3548

Nanoporous Atomically Thin Breathable Personal Protective Membranes

Vanderbilt researchers have developed an atomically thin membrane with extremely high selectivity and permeability for use in personal protective equipment.


Licensing Contact

Philip Swaney

615.322.1067

Nanoporous Atomically Thin Graphene Membranes for Desalination & Nanofiltration

Vanderbilt researchers have developed an atomically thin membrane with extremely high selectivity and permeability for use in desalination and nanofiltration applications.


Licensing Contact

Philip Swaney

615.322.1067

System for Transporting, Sorting, and Assembling Nanoscale Objects

Vanderbilt researchers have developed a new system for transporting and sorting nanoscale and mesoscale particles and biomolecules. The system is able to achieve size-based sorting and captures/arranges the particles within a few seconds, which is significantly faster than the existing method of diffusion-based transport.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Justus Ndukaife

High-Performance Anti-Fouling, Anti-Wetting Membrane for Wastewater Distillation

Vanderbilt researchers have developed a novel membrane for membrane distillation that is resistant to both fouling and wetting and can be used to treat highly contaminated saline wastewater.


Licensing Contact

Philip Swaney

615.322.1067