Browse Technologies

Displaying 11 - 20 of 253


Small Molecule Theraputics That Target the Muscarinic Acetylcholine Receptor 1 For The Treatment of Alzheimer's Disease

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Tom Utley

615.343.3852
Therapeutics
Neuroscience/Neurology

IntelliCane: Instrumented cane for diagnosis and evaluation of gait behavior in individuals with mobility issues.

This device is designed to assist physical therapists in collection of objective data during gait analysis, to facilitate appropriate assistive gait device prescription, to provide patients and therapists feedback during gait training, and to reduce wrist and shoulder injuries with cane usage.Currently gait characteristics are "measured" in a clinic-based atmosphere. This has two limitations: (i) subjective allocation of "measures" of gait characteristics and (ii) limited data based on trials in the clinic ONLY. What this technology is designed to do is achieve freedom from both of these limitations. The measurements are objective and numerical values (force etc.) and the clinic could provide the cane to the user for obtaining a much more extensive data set including use during normal life activities at home etc.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Michael Miga

Image Guidance System for Breast Cancer Surgery

Vanderbilt researchers have developed an image guidance system that aims to reduce the revision rate for breast conserving surgeries through the use of intraoperative tumor location. The platform integrates MRI imaging, optical tracking, tracked ultrasound, and patient specific biomechanical models to provide a superior tumor localization end result.


Licensing Contact

Philip Swaney

615.322.1067

Model-based Compression Correction Framework for Ultrasound

Vanderbilt researchers have developed a system that corrects for compressional effects in ultrasound data during soft tissue imaging. The system uses tracking and digitization information to detect the pose of the ultrasound probe during imaging, and then couples this information with a biomechanical model of the tissue to correct compressional effects during intraoperative imaging.


Licensing Contact

Philip Swaney

615.322.1067

Transoral Lung Access Device

Transoral lung access is preferable to traditional needlebasedaccess due to the lower risk of lung collapse. However present bronchoscope-based devices enable access to only a small portion of the lung. The present device is a robotic image-guided bronchoscope to navigate the airway under closed-loop control to the target. IT is designed to provide transoral access to any location in the lung, particularly the hard-to-reach peripheral regions.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Low-cost, Normally Closed Microfluidic Valve

Vanderbilt researchers have developed a normally closed valve that is able to provide selective movement of small fluid quantities in a microfluidic device. The present microfluidic valve can be actuated using a simple rotating drivehead and mechanical support, greatly simplifying the valve design.


Licensing Contact

Ashok Choudhury

615.322.2503

Portfolio of Continuum Robotic Systems, Algorithms, and Software Technologies from the Robotics Lab of Professor Nabil Simaan

Professor Simaan and his lab have years of experiencing working collaboratively with commercial entities of various sizes. His research is focused on advanced robotics, mechanism design, control, and telemanipulation for medical applications. His projects have led the way in advancing several robotics technologies for medical applications including high dexterity, snake-like robots for surgery, steerable electrode arrays for cochlear implant surgery, robotics for single port access surgery, and natural orifice surgery.


Licensing Contact

Masood Machingal

615.343.3548
Medical Devices
Genitourinary

Higher Accuracy Image-Guidance in Surgery

Vanderbilt engineers have designed and built a device that improves the accuracy of image-guidance systems (IGS) during surgery. The device creates a custom,  non-slip fit over the head and provides a rigid platform for attaching optical tracking markers to the patient, which is a critical component of image-guided neurosurgical procedures. The device can be used to improve the accuracy of IGS in other areas of the anatomy as well.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

Breast Tumor Margin Detection System Using Spatially Offset Raman Spectroscopy

Vanderbilt University researchers have developed a technology that uses spatially offset Raman spectroscopy to obtain depth-resolved information from the margins of tumors. This helps to determine positive or negative tumor margins in applications such as breast lumpectomy, and the technology is currently being investigated for breast cancer margin detection.


Licensing Contact

Ashok Choudhury

615.322.2503