Browse Technologies

Displaying 1 - 10 of 19


Bright White Light Nanocrystals for LEDs

A research team lead by Professor Sandra Rosenthal at Vanderbilt University has developed nanocrystals (~2 nm diameter) that emit white light with very high quantum efficiency. This technology would be a viable cost effective candidate for commercial solid-state lighting applications, such as Light Emitting Diodes (LEDs). These nanocrystals were originally discovered by the same group in 2005; a recent breakthrough in post-treatment results in improving fluorescent quantum yield up to ~ 45%.


Licensing Contact

Chris Harris

615.343.4433

Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexible Instrument with Pre-curved Elements for Surgical Tools

Vanderbilt researchers have developed a novel system for allowing surgical instruments to navigate around tighter corners and access difficult-to-reach areas in the body. This system uses pre-curved elastic elements added on to the existing instrument. Current surgical instruments are manufactured in a straight-line configuration, which means they must bend in order to reach around obstructions in surgery. By adding pre-curved sections, some of the bending is already accomplished, allowing the instrument to bend around tighter corners.


Licensing Contact

Ashok Choudhury

615.322.2503

High Inertance Liquid Piston Engine-Compressor

Inventors at Vanderbilt University have developed a high inertance engine-compressor for use with pneumatically actuated devices, especially those with periods of inactivity between periods of pneumatic use. It utilizes a flexible diaphragm in combination with a liquid piston to achieve high inertance and other operational features such as high efficiency, low noise and low temperature operation.


Licensing Contact

Taylor Jordan

615.936.7505
Energy

Low-Frequency Strain Energy Harvester

Vanderbilt researchers have developed a novel energy-harvesting device capable of efficient electrochemical strain energy harvesting at frequencies as low as 0.01 Hz. The device enables the harvesting of energy produced from low frequencies associated with human motion such as walking and sitting.


Licensing Contact

Ashok Choudhury

615.322.2503

Miniature Magnetorheological Brake Technology

A team of Vanderbilt engineers have developed a miniature magnetorheological (MR) brake with a combination of high braking torque and a fast response time. With potential applicability over a wide spectrum of applications, the device was initially developed with robotic and haptic applications in mind.


Licensing Contact

Ashok Choudhury

615.322.2503

New Optical Tweezers for Rapid Control of Nanoscale Objects

Vanderbilt researchers have developed a novel technology for trapping and dynamically manipulating nanoscale objects. Control over miniature objects like proteins can aid in applications such as biological sensing, single molecule analysis, and size-based sorting of nanoscale objects.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Justus Ndukaife

Improved Biomanufacturing Using Biological Clock Control for High Yield/Low Cost Bioproduct

A team of researchers at Vanderbilt University has developed a method of manipulating the circadian clock of cyanobacteria. This biological manipulation is used to increase gene expression in target genes that produce biofuel and high-value bioproducts, such as pharmaceuticals and cosmetics from precursor-expressing genes. Altering the circadian rhythm in the bacteria provides an improved approach to bioproduct development on a large scale using sunlight as a zero--cost energy solution.


Licensing Contact

Masood Machingal

615.343.3548

Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Philip Swaney

615.322.1067

Ultrasound Device for Underwater High Resolution Imaging in Turbid Water

A team of Vanderbilt researchers has developed a novel system for producing 3D, real-time, high-resolution visualization within arms reach of a diver. The system uses a custom ultrasound array and mirror system in conjunction with software and algorithms to overcome the limitations of existing systems, enabling the diver to see through turbid water in real-time.


Licensing Contact

Philip Swaney

615.322.1067