Summary

Fluorescent labels having near-infrared (NIR) emission wavelengths have the ability to penetrate tissue deeper than other emission wavelengths, providing enormous potential for non-invasive imaging applications. Vanderbilt researchers have developed a novel NIR dye (4-Sulfonir) for multichannel imaging that enables *in vivo* imaging of multiple targets due to its large Stokes shift. 4-Sulfonir with its unique large Stokes shift and wide excitation spectrum could be used in parallel with other NIR dyes for imaging two molecular events simultaneously in one target.

Addressed Need

- High scattering effects of different types of biological tissues make optical imaging very difficult, as it is near impossible to differentiate signal from background signal
- The Stokes shift (difference in absorbed and emitted wavelength) of most NIR dyes is very narrow
- Because of the broad, overlapping peaks, and the typically narrow Stokes shift, it is difficult to isolate the emitted wavelength (signal) from the excitation wavelength and other noise
- Advancement of optical imaging (particularly NIR imaging) is hindered by the limitation of narrow Stokes shift of most infrared dyes currently available in the market

Technology Description

This novel NIR dye has the ability to generate a large Stokes shift, of an impressive 150nm, that allows for more reliable detection of the imaging target. Furthermore, this new dye contains a very wide excitation spectrum allowing excitation in the visible spectrum while the emissions spectrum is registered in the infrared, making the emissions signal easily distinguishable from the excitation noise. These two vital features allows for the imaging of several molecular events at once using different wavelengths within the wide excitation range, while also providing a clear, readable signal.

Unique Properties

- 4-Sulfonir is stable, water-soluble & bioconjugatable
- Synthesis of 4-Sulfonir is cost-effective and time efficient

Intellectual Property Status

- US Patent 8,168,804 issued on 5/1/2012
- US Divisional patent application pending