

Vanderbilt Vaccine Center

About the Vanderbilt Vaccine Center

James E. Crowe, Jr., MD leads the Vanderbilt Vaccine Center, which has specialized expertise in isolating fully human, naturally occurring antibodies to human diseases. These antibodies can be used as therapeutics, prophylactic therapeutics, for vaccine development or vaccine quality control reagents, or in diagnostics. Moreover, these naturally occurring antibodies serve as templates to be optimized and engineered for improved characteristics. The Vanderbilt Vaccine Center specializes in research related to biodefense and emerging infectious diseases.

For more information:

Vanderbilt Vaccine Center News and Information

Get to know Dr. Crowe via his TEDx talk

The Vanderbilt Vaccine Center Twitter/X

Antibody Pipeline Key

Available for development of vaccines

Available for development of diagnostics

Available for development of therapeutics

FDA priority review voucher eligible disease

FILOVIRIDAE

Ebola (ebolavirus EBOV, BDBV)

Targets: GP

Portfolio of specific and cross-reactive filovirus antibodies

Marburg (marburgvirus MARV)

Targets: GP

Portfolio of specific and cross-reactive filovirus antibodies

"Pan-Ebola" (for Ebola, Sudan, and Bundibugyo viruses)

Targets: intact or receptor binding-competent GP

Neutralizes a diverse set of ebolaviruses

PR

LASMODIUM **Malaria mAbs**

Targets: VAR2CSA

FLAVIVIRIDAE

Targets: E protein domain II

Zika Virus (flavivirus ZIKV)

Targets: E, NS-1 proteins

Collection of antibodies to different epitopes for vaccine characterization

HIV/HCV Dual-specific Antibodies

PR

Targets: Env

ORTHOMYXOVIRIDAE

Influenza (influenzavirus A and B)

Targets: HA: Type A&B, H1, H2, H3, H3v, H5, H7, H17, H18

Large collection includes antibodies cross-reactive to multiple HA subtypes, broad H3 antibodies and those specific to unusual variants

PNEUMOVIRIDAE

Respiratory Syncytial Virus

(orthopneumovirus RSV)

Targets: : F, pre-fusion F, antigenic site IV on pre- and post-fusion F, G proteins

Neutralizing antibodies specific to the pre-fusion F protein may be particularly promising as therapeutics. Neutralizing antibodies cross-reactive to RSV and MPV available. Useful tools for rational vaccine design

Metapneumovirus (metapneumovirus HMPV)

Targets: F, antigenic site IV on pre- and post-fusion F

TOGOVIRIDAE

Chikungunya Virus (alphavirus CHIKV)

Targets: E1/E2 proteins

Ross River Virus (alphavirus RRV)

Targets: E2 protein, A and/or B domains

Mayaro Virus (alphavirus)

Targets: E2 protein

*Cross-reactive antibodies to the above three alphavirus are available

Equine Encephalitic Viruses**

(EEEV, VEEV, and WEEV alphaviruses)

Targets: E2 protein

**cross-reactive antibodies to EEEV, VEEV, WEEV are available

RETROVIRIDAE

Design and Development of Empirical and Rational Epitope-Focused HIV-1 Vaccine Candidates

Dx

Vx Dx

Dx

Dx

Targets: ENV

OTHER RNA VIRUSES

Norovirus (norovirus GI and GII)

Targets: Neutralizing

Rift Valley Fever Virus (phlebovirus RVF)

Targets: Neutralizing, Gc or Gn protein

Enterovirus D68 (enterovirus EV-D68)

Dx

Dx

Vx

Dx

PARAMYXOVIRIDAI

Hendra and Nipah Viruses

(henipaviruses HeV and NiV, respectively)

Targets: HeV glycoprotein

HPIV3 Neutralizing Antibodies

Targets: F

DNA VIRUSES

POXVITUS (monkey pox, small cow pox, variola, vaccinia)

Targets: Neutralizing, multiple virus surface proteins

Cross-neutralizing antibodies, antibody combinations protective post-exposure in animal models

CORONAVIRIDAE

Pediatric mAbs

Targets: All tested (tested up to XBB.1.5)

Some neutralize both SARS2 and SARS1

Cross-reactive COVID-19

(SARS-CoV-1 derived) Antibodies (SET 1)

Targets: SARS2 index, SARS1

Non-neutralizing antibodies with Fc effector functions

SARS-CoV-2 Antibodies

Targets: Varying; some XBB.1.5

Some neutralize both SARS2 and SARS1

Vx Dx Tx

Erlichia chafeensis

Targets: Multiple

Staphylococcus aureus

Antibodies may be useful for sepsis

MISCELLANEOUS

Therapeutic Antibodies for Treating

Lung Cancer (Oncologic)

Targets: VEGF

C. Difficile mAbs (C. Difficile)

Targets: Multiple antigens from C. Diff

Norovirus mAbs (Caliciviridae)

Dx

Targets: P

Dx Tx

Dx Tx

Vx

Dx

