Browse Technologies

Displaying 1 - 5 of 5


Small Molecule mGlu3 NAMs as Therapeutics for CNS Disorders

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Small Molecule

mGlu3 NAMs as Therapeutics for Chemoresistant Tumors

Targeting metabotropic glutamate receptor 3 (mGlu3) has been linked as a potential therapeutic to many neurological disorders and well as oncology through the use of dual specific mGlu2/3 Antagonists (LY341495, RO4491533, MGS0039, RO4988546).


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Small Molecule

Long-Lasting and Self-Sustaining Cell Therapy System

Researchers at Vanderbilt have created a novel drug delivery system using two distinct T-cell populations that interact to promote engraftment and persistence in pre-clinical models, increasing the efficacy of T-cell therapies. Furthermore, "booster" treatments can be administered months after the first dose to produce an expansion of antigen specific T cells. These advantages result in longer-term therapeutic efficacy and could reduce the number of treatments required. This system also represents a viable self-renewing platform for the delivery of biologic drugs in patients who would otherwise require frequent administration.


Licensing Contact

Cameron Sargent

615.322.5907

Targeting PD-1H to treat Acute Myeloid Leukemia (AML)

Despite the success of immune checkpoint inhibitors (ICI) like anti-PD-1 in treating other cancers, these therapeutics have not been demonstrated to effectively treat acute myeloid leukemia (AML). Vanderbilt researchers have identified PD-1H as a potential target for treating AML, opening the door for effective therapy using an ICI molecule.


Licensing Contact

Cameron Sargent

615.322.5907

Inventors

Tae Kon Kim
Therapeutics
Oncology

Use of Fluid Shear Stress Treatment to Enhance T Cell Activation

Researchers at Vanderbilt University have developed a technique to enhance immune cell activation by exposing cells to mechanical force while culturing. Proof-of-concept data indicate that activating immune cells with this method may improve therapeutic efficacy and reduce manufacturing expenses, making powerful CAR T cell therapies more accessible to patients in need.


Licensing Contact

Cameron Sargent

615.322.5907