Browse Technologies

Displaying 1 - 10 of 44


Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.


Small Molecule Theraputics That Target the Muscarinic Acetylcholine Receptor 1 For The Treatment of Alzheimer's Disease

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Novel PLD Inhibitors

Vanderbilt researchers have created the first isoform-selective phospholipase D (PLD) inhibitors. These highly potent inhibitors can significantly reduce PLD activity, creating a new class of anti-metastatic agents.


New Clostridium Difficile Recombinant Toxin for Safe Vaccine Development

A structural biology approach has identified a conserved region common to multiple Clostridium toxins. Specific mutations of the protein sequence in this region prevent the toxins from entering into intestinal cells, thereby preventing widespread tissue damage. These recombinant Clostridium toxins may be used to create a multivalent vaccine to protect against multiple species of Clostridium. Furthermore, the recombinant toxin may be used as a safer alternative to the native toxins in vaccine manufacturing. This discovery stems from a collaboration between the laboratories of Dr. Borden Lacy of Vanderbilt University and Dr. Roman Melnyk of the Hospital for Sick Children.


Small Molecule mGlu5 NAMs For The Treatment of Depressive Disorders or Parkinson's Disease

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.


Human Monoclonal Antibodies to Infectious Diseases

Using human B cell hybridoma creation, and antibody engineering technologies, Dr. James E Crowe Jr.'s laboratory has developed an array of antibodies from full length human antibodies to Fab fragments and diabodies. Many of these antibodies are ready for a cooperate partner who can further develop these antibodies into biologic herapeutics. The table below is a sample of the antibodies they are currently researching and have available. In addition to these areas of research, Dr. Crowe is actively seeking collaborative opportunities to identify new interesting targets for future antibody engineering projects.


New Drug for Blood Clot: FXII Inhibitors to Treat Thrombosis

Thrombosis is the formation of a blood clot inside a blood vessel, which may cause reduced blood flow to a tissue, or even tissue death. Thrombosis, inflammation, and infections are responsible for >70% of all human mortality. Thrombosis is also the major factor for heart disease and stroke. 500,000 die from thrombosis every year in Europe. Inhibitory treatment of these conditions may also improve the outcomes of several non-fatal diseases. Researchers from Vanderbilt University and Oregon Health & Science University have jointly discovered new monoclonal antibodies that potently inhibit the blood coagulation protein factor XII (FXII), a critical player in the pathway, and anticoagulate blood. This invention provides foundation for commercial development of anti-thrombotic drugs based on new molecular entities.


Multisubstrate Inhibitors of Histone Acetylation Increase the Cytotoxicity of Chemotherapeutic Agents

Inhibitors of histone acetylation may constitute a novel class of potent therapy sensitizers applicable to a broad range of conventional cancer treatments.


Novel Therapeutic Strategy for Remyelination and Repair of Nerve Injury

Demyelinating injury is notoriously difficult due to an absence of treatments that stimulate the repair and reconstruction of the myelin sheath that insulates the nerves. Dr. Subramaniam Sriram has discoverd that remyelination in the central nervous system can be stimulated through direct or indirect activation of the Toll-like receptor 3 (TLR3) signaling pathway or interleukin 33 (IL-33).


Licensing Contact

Mike Villalobos
mike.villalobos@vanderbilt.edu
615.322.6751

Inventors

Subramaniam Sriram
Therapeutics
Neuroscience/Neurology

Small Molecule-GIRK Potassium Channel Modulators That Are Anxiolytic Therapeutics

The G-protein activated, inward-rectifying potassium (K+) channels, "GIRKs", are a family of ion channels that has been the focus of intense research interest for nearly two decades. GIRK has been shown to play important roles in the pathophysiology of diseases such as anxiety, epilepsy, Down's syndrome, pain perception and drug addiction. Here scientists at Vanderbilt developed the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810) and demonstrated that ML297 is active in animal models of epilepsy. While the group is using ML297 to continue to explore the therapeutic benefits of GIRK modulation, they are continuing to develop more selective and druggable GIRK inhibitors from different scaffolds.


Licensing Contact

Tom Utley
thomas.j.utley@vanderbilt.edu
615.343.3852
Therapeutics