Browse Technologies

Displaying 11 - 20 of 58


New Drug for Blood Clot: FXII Inhibitors to Treat Thrombosis

Thrombosis is the formation of a blood clot inside a blood vessel, which may cause reduced blood flow to a tissue, or even tissue death. Thrombosis, inflammation, and infections are responsible for >70% of all human mortality. Thrombosis is also the major factor for heart disease and stroke. 500,000 die from thrombosis every year in Europe. Inhibitory treatment of these conditions may also improve the outcomes of several non-fatal diseases. Researchers from Vanderbilt University and Oregon Health & Science University have jointly discovered new monoclonal antibodies that potently inhibit the blood coagulation protein factor XII (FXII), a critical player in the pathway, and anticoagulate blood. This invention provides foundation for commercial development of anti-thrombotic drugs based on new molecular entities.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics
Antibody
Assays/Screening

New Insect Repellants Disrupt Olfactory Cues: A Strategy for Pest Protection

A multinational research team, led by Dr. L. J. Zwiebel of Vanderbilt University, has identified new compounds with potential as insect repellents. These compounds work by capitalizing on knowledge of how insect odorant receptors detect and respond to scents. Medicinal chemistry efforts have yielded a number of novel compounds that could short-circuit the insect olfactory system, essentially by over-stimulation, to effectively mask attractive odors. These compounds could be used to repel nuisance and disease-carrying insects away from humans and animals, as well as repel agricultural pests from crops or food storage facilities. Vanderbilt University is seeking commercial partners to develop the technology for agricultural uses.


Licensing Contact

Chris Harris

615.343.4433

Vascular Restoration Therapy with Cell-Penetrating CRADD Protein

Vascular inflammation caused by metabolic, autoimmune, and microbial insults mediates cardiovascular diseases that include hypertension and atherosclerosis (heart attacks, strokes), systemic lupus, and giant cell arteritis. An estimated 35 million Americans have hypercholesterolemia, contributing to 500,000 deaths underlying heart attacks and strokes. In these diseases, metabolic, autoimmune, and microbial insults continually challenge blood and vascular cells by triggering signaling to the nucleus mediated by BCL10. Genetic ablation of BCL10 rescues animals from atherosclerosis, aortic aneurysms, and fatty liver and insulin resistance due to overnutrition. Intracellular therapy with CP-CRADD is designed to extinguish BCL10-mediated noxious signals to avert vascular inflammation and its life-threatening complications including ruptured aneurysms in aorta and brain.


Licensing Contact

Mike Villalobos

615.322.6751
Therapeutics

New Molecules Clear Chronic Infections by Disrupting Bacterial Energy Production Pathways

New compounds developed at Vanderbilt demonstrate a unique mechanism of broad spectrum activity to stymy antibacterial resistance. The compounds are particularly useful in chronic infections where long term antibiotic therapy fails, because it specifically kills "small colony variants" -- the bacteria that have developed resistance mechanisms. These compounds show promise in treating Methicillin-resistant S. aureus (MRSA), Bacillus anthracis (anthrax), and in overcoming difficult-to-treat infections in bone in cystic fibrosis patients. These compounds could be combined with new (and old) antimicrobial drugs to outwit resistant bacterial infections.


Licensing Contact

Karen Rufus

615.322.4295
Therapeutics

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

Oral administration of levocarnitine for treating Sjögren's Syndrome-associated dry eye

Sjögren's syndrome (SjS) is a common and debilitating autoimmune disease, causing dry eye symptoms ranging from discomfort to dysfunction. Vanderbilt researchers have identified orally administered levocarnitine as a novel potential therapeutic for treating this condition.


Licensing Contact

Mike Villalobos

615.322.6751
Opthamology

Anti-inflammatory microparticles for sustained ocular drug delivery

Vanderbilt researchers have developed an injectable drug delivery vehicle using microparticles (MPs) that not only provide sustained cargo delivery over extended time but also play a therapeutic role themselves in reducing inflammation. This drug delivery platform can be used in treating ocular diseases such as glaucoma and traumatic optic neuropathy, as well as other inflammatory diseases throughout the body like peripheral arterial disease and osteoarthritis.


Licensing Contact

Taylor Jordan

615.936.7505

Lickometer: Instrument for measuring rodent drinking behavior

Researchers at Vanderbilt University designed an instrument capable of higher accuracy and analyzing lick microstructure compared to current available models. This device is compatible with classic ventilated home cages, making it easy to build and use with an intuitive touchscreen graphical user interface. The system tracks two-bottle choice licking behavior in up to 18 rodent cages, or 36 single bottles, on a minute-to-minute timescale controlled by a single Arduino microcontroller. Ultimately, the system measures drinking preference over time and changes in bout microstructure, with undisturbed recordings lasting up to 7 days.


Licensing Contact

Greg Pawel

615.343.0996

Small Molecule-GIRK Potassium Channel Modulators That Are Anxiolytic Therapeutics

The G-protein activated, inward-rectifying potassium (K+) channels, "GIRKs", are a family of ion channels that has been the focus of intense research interest for nearly two decades. GIRK has been shown to play important roles in the pathophysiology of diseases such as anxiety, epilepsy, Down's syndrome, pain perception and drug addiction. Here scientists at Vanderbilt developed the first truly potent, effective, and selective GIRK activator, ML297 (VU0456810) and demonstrated that ML297 is active in animal models of epilepsy. While the group is using ML297 to continue to explore the therapeutic benefits of GIRK modulation, they are continuing to develop more selective and druggable GIRK inhibitors from different scaffolds.


Licensing Contact

Cameron Sargent

615.322.5907
Therapeutics
Analgesic
Small Molecule

Use of Fluid Shear Stress Treatment to Enhance T Cell Activation

Researchers at Vanderbilt University have developed a technique to enhance immune cell activation by exposing cells to mechanical force while culturing. Proof-of-concept data indicate that activating immune cells with this method may improve therapeutic efficacy and reduce manufacturing expenses, making powerful CAR T cell therapies more accessible to patients in need.


Licensing Contact

Cameron Sargent

615.322.5907