Browse Technologies

Displaying 1 - 10 of 51


Wolbachia genetic tools for population control of harmful insects

Vanderbilt scientists have engineered transgenic methods for controlling the populations of insects, including infectious disease vectors like mosquitoes and agricultural pests that destroy crops and livestock.


Licensing Contact

Cameron Sargent

615.322.5907

New Insect Repellants Disrupt Olfactory Cues: A Strategy for Pest Protection

A multinational research team, led by Dr. L. J. Zwiebel of Vanderbilt University, has identified new compounds with potential as insect repellents. These compounds work by capitalizing on knowledge of how insect odorant receptors detect and respond to scents. Medicinal chemistry efforts have yielded a number of novel compounds that could short-circuit the insect olfactory system, essentially by over-stimulation, to effectively mask attractive odors. These compounds could be used to repel nuisance and disease-carrying insects away from humans and animals, as well as repel agricultural pests from crops or food storage facilities. Vanderbilt University is seeking commercial partners to develop the technology for agricultural uses.


Licensing Contact

Chris Harris

615.343.4433

Compliant Insertion, Motion, and Force Control of Continuum Robots

Vanderbilt researchers have developed a framework for compliant insertion with hybrid motion and force control of continuum robots. This technology expands the capabilities of robotic surgery by providing continuum robots with the ability to autonomously discern, locate, and react to contact along their length and calculate forces at the tip, thus enabling quick and safe deployment of snake-like robots into deep anatomical passages or unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

Model-based Compression Correction Framework for Ultrasound

Vanderbilt researchers have developed a system that corrects for compressional effects in ultrasound data during soft tissue imaging. The system uses tracking and digitization information to detect the pose of the ultrasound probe during imaging, and then couples this information with a biomechanical model of the tissue to correct compressional effects during intraoperative imaging.


Licensing Contact

Philip Swaney

615.322.1067

System and Methods for Contact Detection and Localization in Continuum Robots

This technology expands the capabilities of continuum robots with a system and method that enables them to detect instances of contact and to estimate the position of the contact. This framework allows the motion of the robot to be constrained so as to ensure the robot doesn't damage itself, another robot arm, or surrounding environments. Applications for this technology include enhanced safe telemanipulation for multi-arm continuum robots in surgery, micro-assembly in confined spaces, and exploration in unknown environments.


Licensing Contact

Masood Machingal

615.343.3548

TagDock: An Efficient Rigid Body Molecular Docking Algorithm For Three Dimensional Models of Oligomeric Biomolecular Complexes With Limited Experimental Restraint Data

TagDock is an efficient rigid body molecular docking algorithm that generates three-dimensional models of oligomeric biomolecular complexes in instances where there is limited experimental restraint data to guide the docking calculations. Through "distance difference analysis" TagDock additionally recommends followup experiments to further discriminate divergent (score-degenerate) clusters of TagDock's initial solution models


Licensing Contact

Masood Machingal

615.343.3548

Lickometer: Instrument for measuring rodent drinking behavior

Researchers at Vanderbilt University designed an instrument capable of higher accuracy and analyzing lick microstructure compared to current available models. This device is compatible with classic ventilated home cages, making it easy to build and use with an intuitive touchscreen graphical user interface. The system tracks two-bottle choice licking behavior in up to 18 rodent cages, or 36 single bottles, on a minute-to-minute timescale controlled by a single Arduino microcontroller. Ultimately, the system measures drinking preference over time and changes in bout microstructure, with undisturbed recordings lasting up to 7 days.


Licensing Contact

Greg Pawel

615.343.0996

Diagnostics Management Team

The sheer volume of medical information available to physicians today is overwhelming. Diagnostic Management Team provides a concise, accurate method for ordering the correct diagnostic tests every time, and it returns the results in a uniform report format, easily read by the physician. This has already been launched within Vanderbilt University, with a high adoption rate amongst physicians and has already shown significant savings.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Mary Zutter
Oncology

Use of Fluid Shear Stress Treatment to Enhance T Cell Activation

Researchers at Vanderbilt University have developed a technique to enhance immune cell activation by exposing cells to mechanical force while culturing. Proof-of-concept data indicate that activating immune cells with this method may improve therapeutic efficacy and reduce manufacturing expenses, making powerful CAR T cell therapies more accessible to patients in need.


Licensing Contact

Cameron Sargent

615.322.5907

Improved Biomanufacturing Using Biological Clock Control for High Yield/Low Cost Bioproduct

A team of researchers at Vanderbilt University has developed a method of manipulating the circadian clock of cyanobacteria. This biological manipulation is used to increase gene expression in target genes that produce biofuel and high-value bioproducts, such as pharmaceuticals and cosmetics from precursor-expressing genes. Altering the circadian rhythm in the bacteria provides an improved approach to bioproduct development on a large scale using sunlight as a zero--cost energy solution.


Licensing Contact

Masood Machingal

615.343.3548