Browse Technologies

Displaying 31 - 40 of 71


Rotary Planar Peristaltic Micropump (RPPM) and Rotary Planar Valve (RPV) for Microfluidic Systems

A Vanderbilt University research team led by Professor John Wikswo has developed low-cost, small-volume, metering peristaltic micropumps and microvalves. These pumps and valves can be used either as stand-alone devices incorporated into microfluidic subsystems, or as readily customized components for research or miniaturized point-of-care instruments, Lab-on-a-Chip devices, and disposable fluid delivery cartridges.


Licensing Contact

Ashok Choudhury

615.322.2503

An Imaging Approach to Detect Parathyroid Gland Health During Endocrine Surgery

Vanderbilt researchers have designed a laser speckle imaging device to detect parathyroid gland viability during endocrine surgery, during which otherwise healthy parathyroid glands are prone to devascularization leading to long-term hypocalcemia. Currently, the surgeon must use his or her best judgement regarding the health of the parathyroid gland. This technology removes the guess work from the decision and provides a real-time assessment of the parathyroid viability.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Devices

PIQASO: A rigid phantom for comprehensive end-to-end evaluation of online adaptive radiotherapy systems

There is currently no radiotherapy phantom capable of quantitatively assessing all components of an online adaptive radiotherapy (online ART) system in a comprehensive end-to-end test.Represented here is a novel, rigid phantom that can simultaneously evaluate an online ART system's image acquisition, deformable image registration, contour propagation, plan re-optimization, dose calculation, and beam delivery in a single process that is robust, quantitative, and convenient.


Licensing Contact

Masood Machingal

615.343.3548

Inexpensive Disposable Hydro-Jet Capsule Robot for Gastric Cancer Screening in Low-Income Countries

Gastric cancer is the second leading cause of cancer death worldwide. While screening programs have had a tremendous impact on reducing mortality, the majority of cases occur in low and middle-income countries (LMIC). Typically, screening for gastric and esophageal cancer is performed using a flexible endoscope; however, endoscopy resources for these settings are traditionally limited. With the development of an inexpensive, disposable system by Vanderbilt researchers, gastroscopy and colonoscopy can be facilitated in areas hampered by a lack of access to the appropriate means.


Licensing Contact

Masood Machingal

615.343.3548

Early Detection of Implant Loosening

Vanderbilt University researchers have developed a new technique for identifying implantloosening. The technique utilizes the analysis of synovial fluid as an early indicator of potential loosening of orthopedic implants.


Licensing Contact

Ashok Choudhury

615.322.2503

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Ashok Choudhury

615.322.2503

No-touch Breast Implant Placement Device

Vanderbilt researchers have developed a breast implant device that minimizes potential contaminants during surgery by requiring no contact between the surgeon and the implant during insertion.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices
Surgery

Surgical Guide for Intraoral Vertical Ramus Osteotomy

Vanderbilt researchers have developed a novel surgical guide for intraoral vertical ramus osteotomy (IVRO) that helps to preserve the proximal segment medial pterygoid attachment and avoid injury to the inferior alveolar neurovascular bundle during the procedure.


Licensing Contact

Philip Swaney

615.322.1067
Medical Devices

Method and System for Automating Oxygen Monitoring and Dosing in Real Time for Patient on Oxygen Therapy

Vanderbilt researcher, Lisa Lancaster, MD, has developed a novel device to monitor the flow as well as adjust actively the levels of oxygen that pass to a patient suffering from Idiopathic Pulmonary Fibrosis or other causes of hypoxic lung disease. Standing out of the pack, this device ensures that patients exerting themselves are given enough oxygen while actively reducing the dosage, to prevent further damage, when the same patient is resting.


Licensing Contact

Masood Machingal

615.343.3548

Inventors

Lisa Lancaster
Medical Devices
Pulmonary/Respiratory

Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Philip Swaney

615.322.1067