Browse Technologies

Displaying 51 - 60 of 79


Advanced Method for Data Corrections in Organ Deformation

A group of Vanderbilt University researchers have developed a solution that will correct for the mis-registration of image data in image-guided surgery. The solution uses software to correct for any mis-registration that is caused by the presence of intraoperative deformations. This invention helps to improve the performance and capabilities of image-guided surgery.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Advanced Ultrasound Imaging for Kidney Stone Detection

The standard for kidney stone detection is through the use of computed tomography (CT). However, CT is expensive and delivers harmful ionizing radiation into the body. Ultrasound would be the ideal way to detect kidney stones except that it performs poorly in detecting and accurately sizing stones. Vanderbilt researchers inventors have developed a technique that is able to separate hard, mineralized material (i.e kidney stones) from soft tissue in a way that is both cheaper and safer than CT and performs better than conventional ultrasound imaging.


Licensing Contact

Masood Machingal

615.343.3548

Assessment of Right Ventricular Function Using Contrast Echocardiography

Vanderbilt Medical Center researchers have developed a non-invasive and reproducible method of assessing right-ventricular function using contrast-echocardiography. The right-ventricular transit time (RVTT) measures the time needed for echocardiographic contrast to travel from the RV to the bifurcation of the main pulmonary artery. Coupled with the pulmonary transit time (PTT), the time needed for contrast to traverse the entire pulmonary circulation, RVTT is part of a family of diagnostic parameters that can report on RV-specific performance as well as the RV's function relative to that of the pulmonary circuit as a whole.


Licensing Contact

Chris Harris

615.343.4433

Automated Inflatable Binder to Counter the Effects of Orthostatic Hypotension

Vanderbilt scientists have developed an automated inflatable abdominal binder that can detect when a patient moves from a prone or sitting positon to a standing position and automatically apply a sustained servo-controlled compression pressure in order to counter the effects of OH. The binder is as effective as conventional drug therapy in controlling OH, without subjecting patients to potentially harmful side effects and interactions with other medications.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Devices
Cardiovascular

Hyper-SHIELDED - Preserving Parahydrogen Spin Order by Efficient Transfer of Nuclear Singlet

Hyperpolarization of nuclear spin ensembles has increased NMR sensitivity to a level that is now enabling detection of metabolism in biological tissue on a time-scale of seconds. The present invention is a pulse sequence that efficiently transforms parahydrogen spin order into heteronuclear magnetization. This was achieved via a single streamlined sequence without recursive application, by finding sequential analytic solutions to the density matrix evolution for each of four independent intervals that collectively flank two proton inversions and one heteronuclear excitation. The name hyper-SHIELDED (Singlet to Heteronuclei by Interative Evolution Locks Dramatic Enhancement for Delivery) reflects the sequence's protective effect on PHIP hyperpolarization.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Latent Image-Derived Features for Prognostic Modeling

Researchers at Vanderbilt have developed a system to estimate prognostic metrics such as the length of a hospital stay, recovery status at discharge, and overall health at discharge, using only baseline imaging and clinical information gathered early in the hospital admission process. This system can assist with medical group operations and planning, it can help to educate families and patients regarding prognosis, and can be used to automatically stage patients for clinical trials.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Ashok Choudhury

615.322.2503

Non-Invasive Cell Size Detection

Vanderbilt researchers have developed a new method for using contrast enhanced MRI to non-invasively map and quantify cell size on a voxel-by-voxel basis. Using this approach, it is possible to monitor and detect diseases or treatments that alter the distribution of cell sizes such as cancer, muscular dystrophy, hepatocellular hypertrophy, and hypertrophic cardiomyopathy.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Parahydrogen-Induced Polarizer (PHIP)

The present invention provides a PANACEA (Pneumatics Allow Nonmagnetic Actuation for Creation of Enhanced Alignment) polarizer system. This is an integrated assembly of pneumatically actuated, nonmagnetic hydraulic circuits that enable PASADENA chemicals to be efficiently stored, mixed, and reacted in close proximity or within NMR magnetic fields.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Kevin Waddell
Medical Imaging

Real-time Detection of Position and Orientation of Wireless Endoscopy Capsule using Magnetic coupling

Vanderbilt researchers have developed a new system to detect the position, orientation, and pressure exerted on surrounding tissues of a wireless capsule endoscopy device.  Magnetic coupling is one of the few physical phenomena capable of transmitting actuation forces across a physical barrier.  Magnetic manipulation has the potential to make surgery less invasive, by allowing untethered miniature devices to enter the body through natural orifices or tiny incisions, and then maneuver with minimal disruption to healthy tissue.  In order to accomplish this goal, the pose (position and orientation) of the medical device must be available in real time.


Licensing Contact

Masood Machingal

615.343.3548