Browse Technologies

Displaying 41 - 50 of 95


Protein that protects probiotics from desiccation, leading to improved gut colonization

Probiotic supplements undergo significant water loss before consumption, killing many of their bacteria and rendering them less effective. Vanderbilt researchers have discovered a protein that protects against damage caused by desiccation and shown that this molecular shield can be added to probiotics to help them survive and colonize the gut. This platform technology can be broadly incorporated into new or existing supplements to make them more efficacious and even improve costs and distribution.


Licensing Contact

Karen Rufus

615.322.4295

Inventors

Eric Skaar, Erin Green
Therapeutics

A Novel Organs-On-Chip Platform

Vanderbilt researchers have created a new multi-organs-on-chip platform that comprises Perfusion Control systems, MicroFormulators, and MicroClinical Analyzers connected via fluidic networks. The real-time combination of multiple different solutions to create customized perfusion media and the analysis of the effluents from each well are both controlled by the intelligent use of a computer-operated system of pumps and valves. This permits, for the first time, a compact, low-cost system for creating a time-dependent drug dosage profile in a tissue system inside each well.


Licensing Contact

Ashok Choudhury

615.322.2503

Enhanced Optical Imaging for the Treatment of Retinal Disease

Vanderbilt researchers have developed a system for enhancing the imaging capabilities of optical coherence tomography (OCT), a tool commonly used to monitor and treat patients with retinal disease. The image resolution of OCT, however, is intrinsically limited. Ideally, a contrast agent could be used to highlight specific parts of the retina within the image, but dye alone is largely ineffective because of the way OCT generates the image. Photothermal heating solves this problem by creating local zones of tissue expansion which can be distinctly detected by OCT. Photothermal-OCT is safe, effective, and enhances the imaging power of a tool widely used by opticians.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

Systems and Methods for Non-destructive Evaluation of Optical Material Properties and Surfaces

A team of Vanderbilt researchers has developed a novel system and method for non-destructive characterization of compound lenses. The approach uses optical coherence tomography and reflectance confocal microscopy to fully characterize lens geometry and glass materials, enabling accurate modeling of compound lenses.


Licensing Contact

Philip Swaney

615.322.1067
Medical Imaging

An Ergothioneine PET Radioligand for Imaging Oxidative Stress in Alzheimer's Disease

Vanderbilt researchers lead by Professor Wellington Pham, PhD, have developed a novel ergothioneine (ERGO) PET radioligand for imaging oxidative stress in Alzheimer's disease.


Licensing Contact

Masood Machingal

615.343.3548
Therapeutics
Neuroscience/Neurology

Cooling-Responsive Gel for Local Drug Delivery Applications

Vanderbilt researchers have created a cooling-responsive gel implant that meets the need for non-invasive local drug delivery and is simple to activate, requiring only an ice pack for some applications, eliminating complex clinical equipment. This implant is ideal for alternative pain management or delivery of cancer therapeutics.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Leon Bellan
Therapeutics

Bioresorbable RF Coils for Post-Surgical Monitoring by MRI

Vanderbilt researchers have developed bioresorbable RF coils to improve the signal-to-noise ratio (SNR) for use in post-surgical monitoring.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Mark Does, John Rogers

Molecular Image Fusion: Cross-Modality Modeling and Prediction Software for Molecular Imaging

A research team at Vanderbilt University Mass Spectrometry Research Center has developed the Molecular Image Fusion software system, that by fusing spatial correspondence between histology and imaging mass spectrometry (IMS) measurements and cross-modality modeling, can predict ion distributions in tissue at spatial resolutions that exceed their acquisition resolution. The prediction resolution can even exceed the highest spatial resolution at which IMS can be physically measured. This software has been successfully tested on different IMS datasets and can be extended to other imaging modalities like MRI, PET, CT, profilometry, ion mobility spectroscopy, and different forms of microscopy.


Licensing Contact

Karen Rufus

615.322.4295

Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Ashok Choudhury

615.322.2503

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Philip Swaney

615.322.1067