Browse Technologies

Displaying 41 - 47 of 47


Simultaneous RNA and Gene Expression Profiling Using Mass Spectrometry

This technology allows the simultaneous detection of RNA transcript abundance (as an assay of gene expression) and protein abundance (as an assay of protein expression) from biological samples without RNA isolation, labeling or amplification. Existing technologies allow for very efficient determinations of protein abundance from a wide variety of biological samples. These methods are in widespread use and are based on mass spectrometry technologies. There are no available technologies that allow efficient and quantitative assessment of multiple RNA transcripts without a previous isolation followed by labeling and/or amplification. The most efficient technologies currently available make use of DNA microarrays to profile RNA abundance as a measure of gene expression. While very robust and useful, these technologies are very labor intensive and suffer from a number of technological drawbacks. This technology takes advantage of a number of existing methods and techniques and brings them together in a novel manner that greatly expands the state of the art for gene expression.


Licensing Contact

Karen Rufus

615.322.4295

Optical Spectroscopic Detection of Cell and Tissue Death

A method for differentiating malignant in vivo liver tissues from normal in vivo liver tissues of a living subject includes the steps of: (a) illuminating a first area and a second area of in vivo liver tissues of the living subject with a first excitation light, (b) measuring an intensity of fluorescent light emitted from each of the first area and the second area of in vivo liver tissues in response to the first excitation light as a function of wavelength so as to obtain a first and a second fluorescent spectra, respectively, (c) illuminating the first area and the second area of in vivo liver tissues with a second excitation light, (d) measuring an intensity of diffilse light reflected by each of the first area and the second area of in vivo liver tissues in response to the second excitation light as a function of wavelength so as to obtain a first and a second diffused reflectance spectra, respectively, and (e) identifying one of the first area and the second area of in vivo liver tissues as malignant liver tissues and the other one of the first area and the second area of in vivo liver tissues as nomial liver tissues, by comparing the first fluorescence spectrum and the second florescence spectrum, and comparing the first diffused reflection spectrum and the second diffused reflection spectrum.


Licensing Contact

Ashok Choudhury

615.322.2503

Combined Raman Spectroscopy- Optical Coherence Tomography (RS-OCT)

Vanderbilt researchers have developed an optical system for the differentiation of normal and cancerous skin lesions. The system combines the diagnostic prowess of two separate techniques to provide non-invasive, real-time, in-situ evaluation of lesions.


Licensing Contact

Ashok Choudhury

615.322.2503

Image-Guided Navigation System for Endoscopic Eye Surgery

A flexible endoscope for ophthalmic orbital surgery is presented. The endoscope has illuminating fiber, image fiber and a free conduit to deliver purge gas/fluid in addition to instruments such as ablation instruments, coagulating instrument or a medication delivery instrument.


Licensing Contact

Ashok Choudhury

615.322.2503

Trimodal Handheld Probe Based on Raman Spectroscopy and Confocal Imaging for Cancer Detection

This technology relates to a device and method for non-invasive evaluation of a target of interest of a living subject, and in particular to devices and methods that integrate confocal imaging with confocal Raman spectroscopy, for non-invasive evaluation of the biochemical compositions and morphological details of normal and cancerous skin lesions of a living subject.


Licensing Contact

Ashok Choudhury

615.322.2503

Novel Application for Imaging Agents

Compounds and methods related to NIR molecular imaging, in-vitro and in-vivo functional imaging, therapy/efficacy monitoring, and cancer and metastatic activity imaging. Compounds and methods demonstrated pertain to the field of peripheral benzodiazepine receptor imaging, metabolic imaging, cellular respiration imaging, cellular proliferation imaging as targeted agents that incorporate signaling agents.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Imaging

Method for the Automatic Segmentation of the Facial Nerve and the Chorda Tympani in CT Images

This is a high resolution imaging device that can detect the fundamental functional units of cortical organization. Currently, with existing technology, we are able to monitor the activity of these units in the awake, head-fixed animal using large standard sized cameras mounted on heavy camera arms. However, we need a capability to conduct such monitoring in the awake and freely moving animal so that we can relate specific patterns of cortical activity to natural behaviors.


Licensing Contact

Taylor Jordan

615.936.7505
Medical Imaging