Browse Technologies

Displaying 31 - 40 of 48


Non-Invasive Bacterial Identification for Acute Otitis Media using Raman Spectroscopy

Vanderbilt researchers have developed an optical-based method for real-time characterization of middle ear fluid in order to diagnose acute otitis media, also knows as a middle ear infection. The present technique allows for quick detection and identification of bacteria and can also be applied to other biological fluids in vivo.


Licensing Contact

Ashok Choudhury

615.322.2503

Non-Invasive Cell Size Detection

Vanderbilt researchers have developed a new method for using contrast enhanced MRI to non-invasively map and quantify cell size on a voxel-by-voxel basis. Using this approach, it is possible to monitor and detect diseases or treatments that alter the distribution of cell sizes such as cancer, muscular dystrophy, hepatocellular hypertrophy, and hypertrophic cardiomyopathy.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Parahydrogen-Induced Polarizer (PHIP)

The present invention provides a PANACEA (Pneumatics Allow Nonmagnetic Actuation for Creation of Enhanced Alignment) polarizer system. This is an integrated assembly of pneumatically actuated, nonmagnetic hydraulic circuits that enable PASADENA chemicals to be efficiently stored, mixed, and reacted in close proximity or within NMR magnetic fields.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Kevin Waddell
Medical Imaging

Real-time Detection of Position and Orientation of Wireless Endoscopy Capsule using Magnetic coupling

Vanderbilt researchers have developed a new system to detect the position, orientation, and pressure exerted on surrounding tissues of a wireless capsule endoscopy device.  Magnetic coupling is one of the few physical phenomena capable of transmitting actuation forces across a physical barrier.  Magnetic manipulation has the potential to make surgery less invasive, by allowing untethered miniature devices to enter the body through natural orifices or tiny incisions, and then maneuver with minimal disruption to healthy tissue.  In order to accomplish this goal, the pose (position and orientation) of the medical device must be available in real time.


Licensing Contact

Masood Machingal

615.343.3548

Relaxation Time Discriminated 1H NMR for Bone Mechanical/Fracture Property Diagnostics

Advances in modern MRI pulse sequences, including ultrashort-echo time and related MRI methods for imaging short T2 signals, have enabled clinically-practical cortical bone imaging. Researchers at the Vanderbilt University Institute of Imaging Science have developed a method of distinguishing and quantifying nuclear magnetic resonance (NMR) signals for cortical bone analysis.


Licensing Contact

Chris Harris

615.343.4433

Selective Size Imaging using Filters via Diffusion Times (SSIFT)

Vanderbilt researchers have developed a novel MRI-based method for fast, robust, and accurate imaging of biological tissue by selecting a specific cell size range (such as tumors) without the need for a contrast agent. One exciting application of this method is imaging brain metastases (BM) that are difficult to differentiate from other brain abnormalities such as radionecrosis when using existing approaches.


Licensing Contact

Chris Harris

615.343.4433

Inventors

Junzhong Xu
Medical Imaging

Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Ashok Choudhury

615.322.2503

pECHO: Easy to Use Smartphone App for Assisting in Transesophageal Echocardiography Exam

Transesophageal echocardiography (TEE) is a test that uses high-frequency sound waves to create images of the heart. It provides more detail that a standard echocardiogram. Vanderbilt researchers have created a software that creates an easy to follow, step-by-step procedure for a transesophageal echocardiography exam.


Licensing Contact

Masood Machingal

615.343.3548

Easy to Use Patient Immobilizer for Stabilizing Limbs During MRI Imaging

Vanderbilt students have created a stabilization system for secure and stable MRI positioning of hands, wrists, knees, shoulders, and the lower back, using affordable, easy to use, and readily available materials. The system effectively reduces image blurring using a non-irritating film and a supportive frame. This device can simultaneously improve MRI diagnosis, enhance the patient experience, and minimize the time and financial burdens of image retakes.


Licensing Contact

Masood Machingal

615.343.3548

Micro-Mirrored Pyramidal Wells

This technology is a system for 3D imaging of live biological cells fabricated using conventional semiconductor technology that provides simultaneous images from multiple vantage points.


Licensing Contact

Ashok Choudhury

615.322.2503
Medical Imaging