Browse Technologies

Displaying 11 - 20 of 47


Model-based Compression Correction Framework for Ultrasound

Vanderbilt researchers have developed a system that corrects for compressional effects in ultrasound data during soft tissue imaging. The system uses tracking and digitization information to detect the pose of the ultrasound probe during imaging, and then couples this information with a biomechanical model of the tissue to correct compressional effects during intraoperative imaging.


Licensing Contact

Philip Swaney

615.322.1067

Near-Infrared Dye with Large Stokes Shift for Simultaneous Multichannel in vivo Molecular Imaging

Fluorescent labels having near-infrared (NIR) emission wavelengths have the ability to penetrate tissue deeper than other emission wavelengths, providing enormous potential for non-invasive imaging applications. However, advancement of optical imaging (particularly NIR imaging) is hindered by the limitation of narrow Stokes shift of most infrared dyes currently available in the market. Vanderbilt researchers have developed a novel NIR dye (4-Sulfonir) for multichannel imaging that enables in vivo imaging of multiple targets due to its large Stokes shift. 4-Sulfonir with its unique large Stokes shift (~150 nm) and wide excitation spectrum could be used in parallel with other NIR dyes for imaging two molecular events simultaneously in one target.


Licensing Contact

Masood Machingal

615.343.3548

NMR Signal Amplification by Reversible Exchange (SABRE) in Water

Vanderbilt researchers have developed a method to perform the Parahydrogen Induced Polarization (PHIP) based method of Signal Amplification by Reversible Exchange (SABRE) in aqueous media. This allows the resulting hyperpolarized molecules to be used for in vivo applications.


Licensing Contact

Chris Harris

615.343.4433
Medical Imaging

Portfolio of Image-Guidance and Organ Localization Technologies from the Lab of Professor Michael Miga

The focus of Dr. Miga's laboratory is on the development of new paradigms in detection, diagnosis, characterization, and treatment of disease through the integration of computational models into research and clinical practice.


Licensing Contact

Philip Swaney

615.322.1067

PosiSeat(TM): Assured Seating of Threaded Surgical Components

Vanderbilt presents an intraoperative device for taking the guesswork out of whether or not a threaded component is securely affixed to bone. This device is an anchor driver that automatically releases upon proper seating of the anchor on the bone of interest.


Licensing Contact

Taylor Jordan

615.936.7505

System and Methods of Using Image-guidance for Placement of Cochlear Stimulator Devices, Drug Carrier Devices, or the Like

Vanderbilt inventors have developed and tested a device (C-in) and method that would shift the current invasive, risky surgical procedure of cochlear implantation to a less invasive outpatient procedure.


Licensing Contact

Taylor Jordan

615.936.7505

Trackerless Image-Guidance Using a Surgical Microscope

Researchers at Vanderbilt have developed a new image-guided, trackerless surgical microscope system to be used in soft tissue surgeries. The current method is to use a surgical microscope along with an image-guided system. This new design eliminates the need for a separate image-guidance system; the entire guidance environment can be realized within the microscope environment.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Michael Miga

Two Degrees-of-Freedom, Fluid Power Stepper Actuator Model

Vanderbilt researchers have developed a novel technology for use of a flexible fluidic actuator in MRI-guided surgical systems. This method eliminates the need for moving the patient out of the MRI machine, onto an operating table, and back in order to perform procedures. It is a safe, sterilized, and successful method to simplify MRI-guided surgical procedures.


Licensing Contact

Taylor Jordan

615.936.7505

Speculum-Free Diagnostic Probe for Optical Assessment of the Cervix

A new approach for obtaining less invasive optical measurements of the cervix has been developed that does not require the use of a speculum exam. This technology can visualize the cervix in vivo to find unique biomarkers that indicate various conditions such as preterm labor, cancer, human papillomavirus (HPV), and dysplasia.


Licensing Contact

Ashok Choudhury

615.322.2503

Self-Decoupled RF Coils for Optimized Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is one of the most important and versatile tools in the repertoire of diagnostics and medical imaging. Vanderbilt researchers have developed a novel, geometry independent, self-decoupling radiofrequency (RF) coil design that will allow MRI machines to generate images at a faster rate and with greater image quality.


Licensing Contact

Philip Swaney

615.322.1067