Browse Technologies

Displaying 1 - 10 of 13


Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.


Licensing Contact

Ashok Choudhury

615.322.2503

Flexible Instrument with Pre-curved Elements for Surgical Tools

Vanderbilt researchers have developed a novel system for allowing surgical instruments to navigate around tighter corners and access difficult-to-reach areas in the body. This system uses pre-curved elastic elements added on to the existing instrument. Current surgical instruments are manufactured in a straight-line configuration, which means they must bend in order to reach around obstructions in surgery. By adding pre-curved sections, some of the bending is already accomplished, allowing the instrument to bend around tighter corners.


Licensing Contact

Ashok Choudhury

615.322.2503

Low-Frequency Strain Energy Harvester

Vanderbilt researchers have developed a novel energy-harvesting device capable of efficient electrochemical strain energy harvesting at frequencies as low as 0.01 Hz. The device enables the harvesting of energy produced from low frequencies associated with human motion such as walking and sitting.


Licensing Contact

Ashok Choudhury

615.322.2503

Miniature Magnetorheological Brake Technology

A team of Vanderbilt engineers have developed a miniature magnetorheological (MR) brake with a combination of high braking torque and a fast response time. With potential applicability over a wide spectrum of applications, the device was initially developed with robotic and haptic applications in mind.


Licensing Contact

Ashok Choudhury

615.322.2503

New Optical Tweezers for Rapid Control of Nanoscale Objects

Vanderbilt researchers have developed a novel technology for trapping and dynamically manipulating nanoscale objects. Control over miniature objects like proteins can aid in applications such as biological sensing, single molecule analysis, and size-based sorting of nanoscale objects.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Justus Ndukaife

Real-Time Feedback for Positioning Electrode Arrays in Cochlear Implants

Vanderbilt researchers have discovered a method ofmonitoring the placement of electrodes in cochlearimplants (CIs) through the use of electrical impedancemeasurements. This technology offers real-timefeedback on electrode positioning, which can beused to more accurately place electrodes duringinitial implantation, or better program the implantsafter they have been placed. These enhancementscombine to give increased hearing quality to bothnew and existing CI patients.


Licensing Contact

Philip Swaney

615.322.1067

Ultrasound Device for Underwater High Resolution Imaging in Turbid Water

A team of Vanderbilt researchers has developed a novel system for producing 3D, real-time, high-resolution visualization within arms reach of a diver. The system uses a custom ultrasound array and mirror system in conjunction with software and algorithms to overcome the limitations of existing systems, enabling the diver to see through turbid water in real-time.


Licensing Contact

Philip Swaney

615.322.1067

Thermoresponsive Printer Filament for Tissue Engineering

Vanderbilt researchers have developed a thermoresponsive filament material for use in 3D printing that can be readily dissolved via cooling. This material has use in a multitude of different applications. One potential application is lost-wax casting for tissue engineering. The present material enables the user to print an intricate vascular structure, embed the structure in an engineered tissue construct, and then dissolve the printed structure to create a hollow vascular network embedded within the tissue construct.


Licensing Contact

Philip Swaney

615.322.1067

Cooling-Triggered Self-Destructing Electronics

Vanderbilt University researchers have developed self-destructing electrical conductors that dissolve and vanish below a certain critical temperature, which is achieved either by actively cooling the circuit or by removing a heat source.


Licensing Contact

Philip Swaney

615.322.1067

Inventors

Leon Bellan, Xin Zhang

Accurate Gamma-Ray Spectroscope for Compositional Analysis of Celestial Bodies

Vanderbilt and Fisk University researchers have developed a new type of gamma ray spectroscope (GRS) that overcomes the limitations of current systems. This type of GRS can be used to accurately determine the subsurface chemical composition of celestial bodies in the solar system.


Licensing Contact

Chris Harris

615.343.4433