Browse Technologies

Displaying 1 - 10 of 277

Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.

Non-Invasive Skin Cancer Detection using Raman Spectroscopy-OCT System (Portfolio)

Vanderbilt University researchers have designed a system for non-invasive discrimination between normal and cancerous skin lesions. The system combines the depth-resolving capabilities of OCT technique with Raman Spectroscopy's specificity of molecular chemistry. By linking both imagining techniques into a single detector arm, the complexity, cost, and size of previously reported RS-OCT instruments have been significantly improved. The combined instrument is capable of acquiring data sets that allow for more thorough assessment of a sample than existing optical techniques.

Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.

MAESTRO: Non-Robotic Dexterous Laproscopic Instrument with a Wrist providing seven degrees of freedom

Inventors at Vanderbilt University have developed a non-robotic dexterous laparoscopic manipulator with a wrist providing seven-degrees-of-freedom. It provides an interface which intuitively maps motion of the surgeon's hands to the tool's ""hands"". The novel user interface approach provides a natural mapping of motion from the surgeon's hands to the instrument tips.

MultiUse Multimodal Imaging Chelates

PK11195 is a high-affinity ligand of the peripheral benzodiazepine receptor (PBR). By linking lanthanide chelates to the PK11195 targeting moiety, Vanderbilt researchers have generated a range of PBR-targeted imaging probes capable of visualizing a number of disease states at cellular levels using a variety of imaging modalities (fl uorescence, PET and SPECT, MRI, electron microscopy).

Robust Learning Algorithms in Adversarial Environments

Vanderbilt engineers have developed an algorithmic framework for machine learning under the threat of adversarial evasion. The framework leverages a game theoretic model of interaction between the learner and an evading attacker, and makes use of modern optimization tools to increase robustness of learning algorithms as they are used in operational settings.

Small Molecule Theraputics That Target the Muscarinic Acetylcholine Receptor 1 For The Treatment of Alzheimer's Disease

The Vanderbilt Center for Neuroscience Drug Discovery (VCNDD) has a mission to promote the translation of advances in basic science towards novel therapeutics. They have recruited faculty and staff with experience at over 10 different pharmaceutical companies to ensure a diverse set of approaches, techniques and philosophies to advancing compounds. Together they aim to de-risk drug discovery programs.

Novel PLD Inhibitors

Vanderbilt researchers have created the first isoform-selective phospholipase D (PLD) inhibitors. These highly potent inhibitors can significantly reduce PLD activity, creating a new class of anti-metastatic agents.

Accurate Gamma-Ray Spectroscope for Compositional Analysis of Celestial Bodies

Vanderbilt and Fisk University researchers have developed a new type of gamma ray spectroscope (GRS) that overcomes the limitations of current systems. This type of GRS can be used to accurately determine the subsurface chemical composition of celestial bodies in the solar system.