Browse Technologies

Displaying 1 - 10 of 275

Steerable Needles: A Better Turning Radius with Less Tissue Damage

A team of Vanderbilt engineers and surgeons have developed a new steerable needle that can make needle based biopsy and therapy delivery more accurate. A novel flexure-based tip design provides enhanced steerability while simultaneously minimizing tissue damage. The present device is useful for almost any needle-based procedure including biopsy, thermal ablation, brachytherapy, and drug delivery.

Non-Invasive Skin Cancer Detection using Raman Spectroscopy-OCT System (Portfolio)

Vanderbilt University researchers have designed a system for non-invasive discrimination between normal and cancerous skin lesions. The system combines the depth-resolving capabilities of OCT technique with Raman Spectroscopy's specificity of molecular chemistry. By linking both imagining techniques into a single detector arm, the complexity, cost, and size of previously reported RS-OCT instruments have been significantly improved. The combined instrument is capable of acquiring data sets that allow for more thorough assessment of a sample than existing optical techniques.

Systems and Methods for Optical Stimulation of Neural Tissues (Portfolio)

Vanderbilt researchers have developed a novel technique for contactless simulation of the central nervous system.  This involves the use of infrared neural stimulation (INS) to evoke the observable action potentials from neurons of the central nervous system.  While infrared neural stimulation of the peripheral nervous system was accomplished almost a decade ago, this is the first technique for infrared stimulation of the central nervous system. This technology has been protected by a portfolio of issued patents.

MAESTRO: Non-Robotic Dexterous Laproscopic Instrument with a Wrist providing seven degrees of freedom

Inventors at Vanderbilt University have developed a non-robotic dexterous laparoscopic manipulator with a wrist providing seven-degrees-of-freedom. It provides an interface which intuitively maps motion of the surgeon's hands to the tool's ""hands"". The novel user interface approach provides a natural mapping of motion from the surgeon's hands to the instrument tips.

MultiUse Multimodal Imaging Chelates

PK11195 is a high-affinity ligand of the peripheral benzodiazepine receptor (PBR). By linking lanthanide chelates to the PK11195 targeting moiety, Vanderbilt researchers have generated a range of PBR-targeted imaging probes capable of visualizing a number of disease states at cellular levels using a variety of imaging modalities (fl uorescence, PET and SPECT, MRI, electron microscopy).

Endonasal Surgical Robot for Sinus and Neurosurgery

Vanderbilt engineers have developed a robotic system for performing sinus and neurosurgery through the nose. This provides a less invasive way to access surgical sites in the sinuses and near the middle of the patient's head, leading to faster recovery times. The robot is modular and sterilizable with detachable cartridge-based instruments. Each instrument is a concentric tube robot, which is a needle-sized tool that can bend and elongate. The system delivers four of these instruments through a single nostril.

A Method to Obtain Uniform Radio Frequency Fields in the Body for High Field MRI

Researchers at Vanderbilt have created a new approach to produce uniform radio frequency (RF) fields in the body during high field magnetic resonance imaging (MRI). Existing high field MRI machines create non-uniform RF fields that lead to non-uniform sensitivity in the generated images, also referred to as "hot" and "cold" spots. These local variations interfere with the tissue contrast of the images that radiologists depend upon to make accurate diagnoses. By generating uniform RF fields in the body, this technology provides the benefits of high field MRI without the non-uniform RF fields.

Licensing Contact

Chris Harris
Medical Imaging

Trackerless Soft Tissue Image Guidance System

A surgical microscope for brain surgeries is described that obviates the need for optical or electromagnetic tracking of camera, surgical tool and patient. Instead, the entire image guidance environment is realized within the microscope environment.

3D Junction Bipolar Membranes: More Efficient and Reliable Electrodialysis

Vanderbilt researchers have developed a unique membrane material for more efficient and reliable eletrodialysis. By utilizing a 3D junction structure, the nanofiber bipolar membrane does not degrade or delaminate during high current passage unlike commercial 2D membranes that are currently available.

Modeling Eyesight:A Mathematical 3D Representation of Vision

Vanderbilt researchers have developed a model for representing the complex geometrical and biochemical basis for vision. The model and corresponding software is built on real-world biochemical parameters, and as such, has great potential for use as an educational tool. It is envisioned that the model and software will be coupled with an interactive graphical user interface whereby students of all ages can engage with an animated model of the eye to learn more about how our eyesight works. Doing so will enable students to discover how mathematics and biology can be joined to study the biological wonders around us.